Skip to main content

An Introduction to Entanglement Theory

  • Chapter
  • First Online:
Quantum Information and Coherence

Part of the book series: Scottish Graduate Series ((SGS))

Abstract

We review the theory of entanglement measures, concentrating mostly on the finite dimensional two-party case. We begin with a non technical introduction, followed by topics such as: single-copy and asymptotic entanglement manipulation; the entanglement of formation; the entanglement cost; the distillable entanglement; the relative entropic measures; the squashed entanglement; log-negativity; the robustness monotones; relationship between entanglement and many-body physics. We conclude with a short introduction to the problem of quantitative entanglement verification via experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    If we can transport a qubit without any decoherence, then any entanglement shared by that qubit will also be distributed perfectly. Conversely, if we can distribute entangled states perfectly then with a small amount of classical communication we may use teleportation [10] to perfectly transmit quantum states.

  2. 2.

    The class of PPT operations was proposed by Rains [16, 39], and is defined as the set of completely positive operations \(\varPhi \) such that \(\Gamma _B \circ \varPhi \circ \Gamma _B\) is also completely positive, where \(\Gamma _B\) corresponds to transposition of all of Bob’s particles, including ancillas. One can also consider transposition only of those particles belonging to Bob that undergo the operation \(\varPhi \), and this leads to a different definition which may be useful in other contexts. It is also irrelevant whether the transposition is taken over Alice or Bob, and so one may simply assert that \(\Gamma \circ \varPhi \circ \Gamma \) must be completely positive, where \(\Gamma \) is the transposition of one party. It can be shown that the PPT operations are precisely those operations that preserve the set of PPT states (see later for a definition of the PPT criterion). Hence the set of non-PPT operations includes any operation that creates a free (non-bound) entangled state out of one that is PPT. Hence PPT operations correspond to some notion of locality, and in contrast to separable operations it is relatively easy to check whether a quantum operation is PPT [16].

  3. 3.

    That this is true can be proven as follows. Consider a general bipartite state \(|\psi \rangle = \sum a_{ij}|i\rangle |j\rangle \). The amplitudes \(a_{ij}\) can be considered as the matrix elements of a matrix \(A\). This matrix hence completely represents the state (as long as a local basis is specified). If we perform the local unitary transformation \(U \otimes V|\psi \rangle \) then the matrix \(A\) gets transformed as \(A \rightarrow UAV^T\). It is a well established result of matrix analysis—the singular value decomposition [31]—that any matrix \(A\) can be diagonalised into the form \(A_{ij}=\lambda _{i}\delta _{ij}\) by a suitable choice of (\(U,V\)), even if \(A\) is not square. The coefficients \(\lambda _i\) are the so-called singular values of \(A\), and correspond to the Schmidt coefficients.

  4. 4.

    This is reminiscent of Shannon compression in classical information theory—where the compression process loses all imperfections in the limit of infinite block sizes as long as the compression rate is below a threshold [34].

  5. 5.

    As mentioned earlier under a class of operations that is slightly larger than LOCC the relative entropy of entanglement actually equals \(E_C\) and \(E_D\) under this class of operations and is in this setting the unique measure of entanglement [6163].

References

  1. Bell, M., Gottfried, K., Veltmann, M.: John S. Bell on the Foundations of Quantum Mechanics. World Scientific Publishing, Singapore (2001)

    Google Scholar 

  2. Bell, J.S.: Physica 1, 195 (1964)

    Google Scholar 

  3. Hardy, L.: Contemp. Phys. 39, 419 (1998)

    ADS  Google Scholar 

  4. Eisert, J., Plenio, M.B.: Int. J. Quant. Inf. 1, 479 (2003)

    MATH  Google Scholar 

  5. Plenio, M.B., Virmani, S.: Quant. Inf. Comp. 7, 1 (2007)

    MATH  MathSciNet  Google Scholar 

  6. Horodecki, R., Horodecki, M., Horodecki, P., Horodecki, K.: Quant. Inf. Comp. 7, 1-51 (2007)

    Google Scholar 

  7. Plenio, M.B., Vedral, V.: Contemp. Phys. 39, 431 (1998)

    ADS  Google Scholar 

  8. Wineland, D.J., et al.: Phys. Rev. A 46, R6797 (1992)

    ADS  Google Scholar 

  9. Huelga, S.F., Macchiavello, C., Pellizzari, T., Ekert, A.K., Plenio, M.B., Cirac, J.I.: Phys. Rev. Lett. 79, 3865–3868 (1997)

    ADS  Google Scholar 

  10. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  11. Christandl, M.: Ph.D. thesis, quant-ph/0604183

    Google Scholar 

  12. Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.B.: Phys. Rev. A 62, 052317 (2000)

    ADS  Google Scholar 

  13. Collins, D., Linden, N., Popescu, S.: Phys. Rev. A 64, 032302 (2001)

    ADS  MathSciNet  Google Scholar 

  14. Virmani, S., Plenio, M.B.: Phys. Rev. A 67, 062308 (2003)

    ADS  MathSciNet  Google Scholar 

  15. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J., Wootters, W.K.: Phys. Rev. A 59, 1070 (1999)

    ADS  MathSciNet  Google Scholar 

  16. Rains, E.M.: IEEE Trans. Inf. Theory 47, 2921 (2001)

    MATH  MathSciNet  Google Scholar 

  17. Eggeling, T., Vollbrecht, K.G.H., Werner, R.F., Wolf, M.M.: Phys. Rev. Lett. 87, 257902 (2001)

    ADS  Google Scholar 

  18. Audenaert, K., Plenio, M.B., Eisert, J.: Phys. Rev. Lett. 90, 027901 (2003)

    ADS  Google Scholar 

  19. Werner, R.F.: Phys. Rev. A 40, 4277 (1989)

    ADS  Google Scholar 

  20. Masanes, L.: Phys. Rev. Lett. 96, 150501 (2006)

    ADS  MathSciNet  Google Scholar 

  21. Brandão, F.G.S.L.: E-print arxiv quant-ph/0510078

    Google Scholar 

  22. Masanes, L.: E-print arxiv quant-ph/0510188

    Google Scholar 

  23. Bennett, C.H., Bernstein, H., Popescu, S., Schumacher, B.: Phys. Rev. A 53, 2046 (1996)

    ADS  Google Scholar 

  24. Vedral, V., Plenio, M.B., Rippin, M.A., Knight, P.L.: Phys. Rev. Lett. 78, 2275 (1997)

    ADS  MATH  MathSciNet  Google Scholar 

  25. Vedral, V., Plenio, M.B.: Phys. Rev. A 57, 1619 (1998)

    ADS  Google Scholar 

  26. Lo, H.-K., Popescu, S.: Phys. Rev. A 63, 022301 (2001)

    ADS  Google Scholar 

  27. Nielsen, M.A.: Phys. Rev. Lett. 83, 436 (1999)

    ADS  Google Scholar 

  28. Vidal, G.: Phys. Rev. Lett. 83, 1046 (1999)

    ADS  Google Scholar 

  29. Jonathan, D., Plenio, M.B.: Phys. Rev. Lett. 83, 1455 (1999)

    ADS  MathSciNet  Google Scholar 

  30. Hardy, L.: Phys. Rev. A 60, 1912 (1999)

    ADS  Google Scholar 

  31. Bhatia, R.: Matrix Analysis. Springer, Berlin (1997)

    Google Scholar 

  32. Jonathan, D., Plenio, M.B.: Phys. Rev. Lett. 83, 3566 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  33. Vidal, G., Jonathan, D., Nielsen, M.A.: Phys. Rev. A 62, 012304 (2000)

    ADS  Google Scholar 

  34. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  35. Common synonyms for two-qubit maximally entangled states include ‘singlet states’, ‘Bell pairs’ or ‘EPR pairs’. Even though these terms strictly mean different things, we will follow this widespread abuse of terminology

    Google Scholar 

  36. Rains, E.M.: E-print arxiv quant-ph/9707002

    Google Scholar 

  37. Hayden, P., Horodecki, M., Terhal, B.M.: J. Phys. A 34, 6891 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  38. Kent, A.: Phys. Rev. Lett. 81, 2839 (1998)

    ADS  MATH  MathSciNet  Google Scholar 

  39. Rains, E.: Phys. Rev. A 60, 173–179 (1999)

    Google Scholar 

  40. Vidal, G., Cirac, J.I.: Phys. Rev. Lett. 86, 5803 (2001)

    ADS  Google Scholar 

  41. Horodecki, M.: Sen(De), A., Sen, U. Phys. Rev. A 67, 062314 (2003)

    ADS  Google Scholar 

  42. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Phys. Rev. A 54, 3824 (1996)

    ADS  MathSciNet  Google Scholar 

  43. Wootters, W.K.: Phys. Rev. Lett. 80, 2245 (1998)

    ADS  Google Scholar 

  44. Wotters, W.K.: Quant. Inf. Comp. 1, 27 (2001)

    Google Scholar 

  45. Vedral, V., Plenio, M.B., Jacobs, K., Knight, P.L.: Phys. Rev. A 56, 4452 (1997)

    ADS  Google Scholar 

  46. Christandl, M., Winter, A.: J. Math. Phys. 45, 829 (2004). Comm. Math. Phys. 246, 443 (2003)

    Google Scholar 

  47. Smolin, J., Verstraete, F., Winter, A.: Phys. Rev. A 72, 052317 (2005)

    ADS  Google Scholar 

  48. Harrow, A., Nielsen, M.: Phys. Rev. A 68, 012308 (2003)

    ADS  Google Scholar 

  49. Virmani, S., Huelga, S.F., Plenio, M.B.: Phys. Rev. A. 71, 042328 (2005)

    ADS  MathSciNet  Google Scholar 

  50. Murao, M., Plenio, M.B., Popescu, S., Vedral, V., Knight, P.L.: Phys. Rev. A 57, 4075 (1998)

    ADS  Google Scholar 

  51. Aschauer, H., Dür, W., Briegel, H.J.: Phys. Rev. A 71, 012319 (2005)

    ADS  Google Scholar 

  52. Goyal, K., McCauley, A., Raussendorf, R.: E-print arxiv quant-ph/0605228

    Google Scholar 

  53. Chen, K., Lo, H.-K.: quant-ph/0404133

    Google Scholar 

  54. Donald, M.J., Horodecki, M., Rudolph, O.: J. Math. Phys. 43, 4252 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  55. Plenio, M.B., Vitelli, V.: Contemp. Phys. 42, 25 (2001)

    ADS  Google Scholar 

  56. Plenio, M.B.: Phys. Rev. Lett. 95, 090503 (2005)

    ADS  MathSciNet  Google Scholar 

  57. Horodecki, M.: Open Syst. Inf. Dyn. 12, 231 (2005)

    MATH  MathSciNet  Google Scholar 

  58. Shor, P.W., Smolin, J.A., Terhal, B.M.: Phys. Rev. Lett. 86, 2681 (2001)

    ADS  Google Scholar 

  59. DiVincenzo, D., Horodecki, M., Leung, D., Smolin, J., Terhal, B.: Phys. Rev. Lett. 92, 067902 (2004)

    ADS  Google Scholar 

  60. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Phys. Rev. Lett. 94, 200501 (2005)

    ADS  MathSciNet  Google Scholar 

  61. Brandao, F.G.S.L., Plenio, M.B.: Nat. Phys. 4, 873–877 (2008)

    Google Scholar 

  62. Brandao, F.G.S.L., Plenio, M.B.: Comm. Math. Phys. 295, 791 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  63. Brandao, F.G.S.L., Plenio, M.B.: Comm. Math. Phys. 295, 829–851 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  64. Synak-Radtke, B., Horodecki, M.: E-print arxiv quant-ph/0507126

    Google Scholar 

  65. Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. Lett. 84, 2014 (2000)

    ADS  MathSciNet  Google Scholar 

  66. Virmani, S., Plenio, M.B.: Phys. Lett. A 288, 62 (2000)

    ADS  MathSciNet  Google Scholar 

  67. Eisert, J., Plenio, M.B.: J. Mod. Opt. 46, 145 (1999)

    ADS  Google Scholar 

  68. Zyczkowski, K., Bengtsson, I.: Ann. Phys. 295, 115 (2002)

    ADS  MATH  MathSciNet  Google Scholar 

  69. Miranowicz, A., Grudka, A.: J. Opt. B Quantum Semiclass. Optics 6, 542 (2004)

    ADS  Google Scholar 

  70. Yang, D., Horodecki, M., Horodecki, R., Synak-Radtke, B.: Phys. Rev. Lett. 95, 190501 (2005)

    ADS  MathSciNet  Google Scholar 

  71. Horodecki, M., Horodecki, P., Horodecki, R., Oppenheim, J.: Sen(De), A., Synak, B. Phys. Rev. A 71, 062307 (2005)

    ADS  Google Scholar 

  72. Plenio, M.B., Virmani, S., Papadopoulos, P.: J. Phys. A 33, L193 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  73. Vollbrecht, K.G.H., Verstraete, F.: Phys. rev. A 71, 062325 (2005)

    ADS  Google Scholar 

  74. Devetak, I., Winter, A.: Proc. R. Soc. Lond. A 461, 207 (2005)

    ADS  MATH  MathSciNet  Google Scholar 

  75. Holevo, A.S.: IEEE Trans. Info. Theor. 44, 269 (1998)

    MATH  MathSciNet  Google Scholar 

  76. Hastings, M.B.: Nat. Phys. 5, 255 (2009)

    Google Scholar 

  77. Audenaert, K., Verstraete, F., De Moor, B.: Phys. Rev. A 64, 052304 (2001)

    ADS  Google Scholar 

  78. Vollbrecht, K.G.H., Werner, R.F.: Phys. Rev. A 64, 062307 (2001)

    ADS  Google Scholar 

  79. Eisert, J., Felbinger, T., Papadopoulos, P., Plenio, M.B., Wilkens, M.: Phys. Rev. Lett. 84, 1611 (2000)

    ADS  Google Scholar 

  80. Terhal, B., Vollbrecht, K.G.H.: Phys. Rev. Lett. 85, 2625 (2000)

    ADS  Google Scholar 

  81. Plenio, M.B., Vedral, V.: J. Phys. A 34, 6997 (2001)

    ADS  MATH  MathSciNet  Google Scholar 

  82. Donald, M.J., Horodecki, M.: Phys. Lett. A 264, 257 (1999)

    ADS  MATH  MathSciNet  Google Scholar 

  83. Audenaert, K., Eisert, J., Jané, E., Plenio, M.B., Virmani, S., DeMoor, B.: Phys. Rev. Lett. 87, 217902 (2001)

    ADS  Google Scholar 

  84. Linden, N., Popescu, S., Schumacher, B., Westmoreland, M.: E-print arxiv quant-ph/9912039

    Google Scholar 

  85. Galvão, E., Plenio, M.B., Virmani, S.: J. Phys. A 33, 8809 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  86. Wu, S., Zhang, Y.: Phys. Rev. A 63, 012308 (2001)

    ADS  Google Scholar 

  87. Ishizaka, S.: Phys. Rev. Lett. 93, 190501 (2004)

    ADS  Google Scholar 

  88. Ishizaka, S., Plenio, M.B.: Phys. Rev. A 71, 052303 (2005)

    ADS  Google Scholar 

  89. Ishizaka, S., Plenio, M.B.: Phys. Rev. A 72, 042325 (2005)

    ADS  Google Scholar 

  90. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  91. Audenaert, K., DeMoor, B., Vollbrecht, K.G.H., Werner, R.F.: Phys. Rev A 66, 032310 (2002)

    ADS  Google Scholar 

  92. Wei, T., Goldbart, P.: Phys. Rev. A. 68, 042307 (2003)

    ADS  Google Scholar 

  93. Eisert, J., Audenaert, K., Plenio, M.B.: J. Phys. A 36, 5605 (2003)

    ADS  MATH  MathSciNet  Google Scholar 

  94. Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)

    ADS  MATH  MathSciNet  Google Scholar 

  95. Horodecki, P.: Phys. Lett. A 232, 333 (1997)

    ADS  MATH  MathSciNet  Google Scholar 

  96. Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Rev. Lett. 80, 5239 (1998)

    ADS  MATH  MathSciNet  Google Scholar 

  97. Lee, J., Kim, M.S., Park, Y.J., Lee, S.: J. Mod. Opt. 47, 2151 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  98. Eisert, J.: Ph.D. thesis. University of Potsdam (2001)

    Google Scholar 

  99. Vidal, G., Werner, R.F.: Phys. Rev. A 65, 32314 (2002)

    ADS  Google Scholar 

  100. Alicki, R., Fannes, M.: E-print arxiv quantum-ph/0312081

    Google Scholar 

  101. Ishizaka, S.: Phys. Rev. A 69, 020301(R) (2004)

    ADS  MathSciNet  Google Scholar 

  102. Tucci, R.R.: quant-ph/9909041, quant-ph/0202144

    Google Scholar 

  103. Vidal, G., Tarrach, R.: Phys. Rev. A. 59, 141 (1999)

    ADS  MathSciNet  Google Scholar 

  104. Steiner, M.: Phys. Rev. A 67, 054305 (2003)

    ADS  Google Scholar 

  105. Lewenstein, M., Sanpera, A.: 80, 2261 (1998)

    Google Scholar 

  106. Audenaert, K., Eisert, J., Plenio, M.B., Werner, R.F.: Phys. Rev. A 66, 042327 (2002)

    ADS  Google Scholar 

  107. Plenio, M.B., Eisert, J., Dreißig, J., Cramer, M.: Phys. Rev. Lett. 94, 060503 (2005)

    ADS  MathSciNet  Google Scholar 

  108. Cramer, M., Eisert, J., Plenio, M.B., Dreissig, J.: Phys. Rev. A 73, 012309 (2006)

    ADS  Google Scholar 

  109. Cramer, M., Eisert, J., Plenio, M.B.: Phys. Rev. Lett. 98, 220603 (2007)

    ADS  Google Scholar 

  110. Eisert, J., Cramer, M., Plenio, M.B.: Rev. Mod. Phys. 82, 277–306 (2010)

    ADS  MATH  MathSciNet  Google Scholar 

  111. Audenaert, K.M.R., Plenio, M.B.: New J. Phys. 8, 266 (2006)

    ADS  Google Scholar 

  112. Eisert, J., Brandao, F.G.S.L., Audenaert, K.M.R.: New J. Phys. 9, 46 (2007)

    ADS  MathSciNet  Google Scholar 

  113. Gühne, O., Reimpell, M., Werner, R.F.: Phys. Rev. Lett. 98, 110502 (2007)

    Google Scholar 

  114. Gühne, O., Reimpell, M., Werner, R.F.: Phys. Rev. A 77, 052317 (2008)

    ADS  Google Scholar 

  115. Wunderlich, H., Plenio, M.B.: J. Mod. Opt. 56, 2100–2105 (2009)

    ADS  MATH  Google Scholar 

  116. Wunderlich, H., Virmani, S., Plenio, M.B.: New J. Phys. 12, 083026 (2010)

    ADS  Google Scholar 

  117. Cramer, M., Plenio, M.B., Wunderlich, H.: Phys. Rev. Lett. 106, 020401 (2011)

    ADS  Google Scholar 

  118. Wunderlich, H., Vallone, G., Mataloni, P., Plenio, M.B.: New J. Phys. 13, 033033 (2011)

    ADS  Google Scholar 

  119. Bhatia, R.: Matrix Analysis. Springer, New York (1997)

    Google Scholar 

  120. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  121. Cramer, M., Plenio, M.B., Flammia, S.T., Gross, D., Bartlett, S.D., Somma, R., Landon-Cardinal, O., Liu, Y.-K., Poulin, D.: Nat. Commun. 1(9), 149 (2010)

    ADS  Google Scholar 

  122. Baumgratz, T., Gross, D., Cramer, M., Plenio, M.B.: arXiv:1205

    Google Scholar 

  123. Brandao, F.G.S.L.: Phys. Rev. A 72, 040303(R) (2005)

    MathSciNet  Google Scholar 

  124. Dür, W., Vidal, G., Cirac, J.I.: Phys. Rev. A 62, 062314 (2000)

    ADS  MathSciNet  Google Scholar 

  125. Bennett, C. H., Popescu, S., Rohrlich, D., Smolin , J. A., Thapliyal, A. V.: Phys. Rev. A. 63,012307 (2001).

    Google Scholar 

Download references

Acknowledgments

This work was supported by an Alexander von Humboldt Professorship and a Starter grant at the University of Strathclyde.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin B. Plenio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Plenio, M.B., Virmani, S.S. (2014). An Introduction to Entanglement Theory. In: Andersson, E., Öhberg, P. (eds) Quantum Information and Coherence. Scottish Graduate Series. Springer, Cham. https://doi.org/10.1007/978-3-319-04063-9_8

Download citation

Publish with us

Policies and ethics