Skip to main content

Compact and Robust Image Fingerprints Based on CCA of Local Features

  • Conference paper
  • 2895 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8294))

Abstract

Image fingerprints are perceptual features or short summaries of a given image. They can be used for identifying image contents just as human fingerprints are used for identification. In this paper, we propose a novel compact image fingerprint extraction method based on canonical correlation analysis (CCA) of local features. After extraction of local SIFT features, we first divide the 128-dimension feature into two segments to form two closely related feature matrices for a given image. Then we apply CCA to the two matrices, and take the quantized canonical coefficient matrix (8×8) as the image fingerprint which is very compact, only 64 bytes for any image of arbitrary size. Experimental results show that the proposed method is discriminative and robust against both normal image processing operations such as compression common geometric transformations including cropping, scaling, and rotation.

This work was supported by Science and Technology Program of Hunan Province (2012FJ3035) and National Natural Science Foundation of China (61272214).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seoa, J.S., Haitsmab, J., Kalkerb, T., Yoo, C.D.: A robust image fingerprinting system using the Radon transform. Signal Processing: Image Communication 19(4), 325–339 (2004)

    Google Scholar 

  2. Zhu, B.B., Swanson, M.D., Tewfik, A.H.: When seeing isn’t believing (multimedia authentication technologies). IEEE Signal Processing Magazine 21(2), 40–49 (2004)

    Article  Google Scholar 

  3. Tang, S., Li, J.-t., Zhang, Y.-D.: Compact and Robust Image Hashing. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 547–556. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Tang, S.: Research on multimedia digital signature techniques, PhD Thesis, Institute of Computing Technology, Chinese Academy of Sciences (January 2006)

    Google Scholar 

  5. Li, H., Wang, X., Tang, J., Zhao, C.: Combining Global and Local Matching of Multiple Features for Precise Retrieval of Item Images. ACM/Springer Multimedia System Journal 19(1), 37–49 (2013)

    Article  Google Scholar 

  6. Tang, S., Zheng, Y.-T., Wang, Y., Chua, T.-S.: Sparse Ensemble Learning for Concept Detection. IEEE Transactions on Multimedia 14(1), 43–54 (2012)

    Article  Google Scholar 

  7. Tang, S., Li, J.-T., Li, M., Xie, C., Liu, Y.-Z., Tao, K., Xu, S.-X.: TRECVID 2008 High-Level Feature Extraction By MCG-ICT-CAS. In: Proc. TRECVID 2008 Workshop, Gaithesburg, USA (November 2008)

    Google Scholar 

  8. Schneider, M., Chang, S.-F.: A robust content based digital signature for image authentication. In: Proceedings of IEEE ICIP 1996, Lausanne, Switzerland, vol. 3, pp. 227–230 (October 1996)

    Google Scholar 

  9. Queluz, M.P.: Authentication of digital images and video: generic models and a new contribution. Signal Processing: Image Communication 16(5), 461–475 (2001)

    Google Scholar 

  10. Lin, C.-Y., Chang, S.-F.: A robust image authentication method distinguishing JPEG compression from malicious manipulation. IEEE Trans. Circuits Syst. Video Technol. 11(2), 153–168 (2001)

    Article  MathSciNet  Google Scholar 

  11. Lin, C.-Y., Chang, S.-F.: Robust digital signature for multimedia authentication. IEEE Circuits and Systems Magazine 3(4), 23–26 (2003)

    Article  MathSciNet  Google Scholar 

  12. Tang, S., Li, J.-t., Zhang, Y.D.: Compact and Robust Fingerprints Using DCT Coefficients of Key Blocks. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 521–528. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Tang, S., Li, J.-T., Zhang, Y.-D.: SSF Fingerprint for Image Authentication: An Incidental Distortion Resistant Scheme. In: ACM Multimedia 2005, Singapore, November 6-11 (2005)

    Google Scholar 

  14. Swaminathan, A., Mao, Y., Wu, M.: Robust and secure image hashing. IEEE Trans. Inf. Forensics Security 1(2), 215–230 (2006)

    Article  Google Scholar 

  15. Monga, V., Banerjee, A., Evans, B.L.: A clustering based approachto perceptual image hashing. IEEE Trans. Inf. Forensics Security 1(1), 68–79 (2006)

    Article  Google Scholar 

  16. Monga, V., Mihcak, M.K.: Robust and secure image hashingvia non-negative matrix factorizations. IEEE Trans. Inf. Forensics Security 2(3), 376–390 (2007)

    Article  Google Scholar 

  17. Zhang, Y.-D., Tang, S., Li, J.-T.: Secure and Incidental Distortion Tolerant Digital Signature for Image Authentication. Journal of Computer Science and Technology 22(4), 618–625 (2007)

    Article  Google Scholar 

  18. Lu, W., Wu, M.: Multimedia forensic hash based on visual words”. In: 17th IEEE International Conference on Image Processing (ICIP), Hong Kong, China, September 26-29 (2010)

    Google Scholar 

  19. Ahmed, F., Siyal, M.Y., Abbas, V.U.: A secure and robust hash-based scheme for image authentication. Comput. J. 55(6), 686–701 (2012)

    Article  Google Scholar 

  20. Lei, Y., Wang, Y., Huang, J.: Robust image hash in Radon transform domain for authentication. Signal Processing: Image Communication 26(6), 280–288 (2011)

    Google Scholar 

  21. Wang, X., Zheng, N., Xue, J., Liu, Z.: A Novel Image Signature Method for Content Authentication. Comput. J. 55(6), 686–701 (2012)

    Article  Google Scholar 

  22. Lv, X., Wang, Z.J.: Perceptual image hashing basedon shape contexts and local feature points. IEEE Trans. Inf. Forensics Security 7(3), 1081–1093 (2012)

    Article  Google Scholar 

  23. Zhao, Y., Wang, S., Zhang, X., Yao, H.: Robust Hashing for Image Authentication Using Zernike Moments and Local Features. IEEE Trans. Inf.Forensics Security 8(1), 55–63 (2013)

    Article  Google Scholar 

  24. Fabien, A.P.: Petitcolas, “Watermarking schemes evaluation”. IEEE Signal Processing 17(5), 58–64 (2000)

    Article  MathSciNet  Google Scholar 

  25. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 312–377 (1936)

    Google Scholar 

  26. David, R.: Sparse Canonical Correlation Analysis. In: Technical Report, University College London (August 2007)

    Google Scholar 

  27. Bach, F., Jordan, M.: Kernel independent component Analysis. Journal of Machine Leaning Research 3, 1–48 (2002)

    MathSciNet  Google Scholar 

  28. Hardoon, D.R., Saunders, C., Szedmak, S., Shawe-Taylor, J.: A correlation approach for automatic image annotation. In: Li, X., Zaïane, O.R., Li, Z.-h. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 681–692. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  29. Hardoon, D.R., Shawe-Taylor, J.: KCCA for different levelprecision in content-based image retrieval. In: In Proceedings of Third International Workshop on Content-Based Multimedia Indexing. IRISA, Rennes (2003)

    Google Scholar 

  30. Hardoon, D.R., Szedmak, S., Shawe-Taylor, J.: Canonical correlation analysis: an overview with application to learning methods. Neural Computation 16, 2639–2664 (2004)

    Article  MATH  Google Scholar 

  31. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  32. Wu, C.: SiftGPU: A GPU Implementation of Scale Invariant Feature Transform (SIFT) (2007), http://cs.unc.edu/~ccwu/siftgpu

  33. Huiskes, M.J., Thomee, B., Lew, M.S.: New trends and ideas in visual concept detection: the MIR flickr retrieval evaluation initiative. In: MIR 2010, pp. 527–536 (2010), http://press.liacs.nl/mirflickr

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Jing, Y., Sun, F. (2013). Compact and Robust Image Fingerprints Based on CCA of Local Features. In: Huet, B., Ngo, CW., Tang, J., Zhou, ZH., Hauptmann, A.G., Yan, S. (eds) Advances in Multimedia Information Processing – PCM 2013. PCM 2013. Lecture Notes in Computer Science, vol 8294. Springer, Cham. https://doi.org/10.1007/978-3-319-03731-8_80

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03731-8_80

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03730-1

  • Online ISBN: 978-3-319-03731-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics