Skip to main content

Influence of Defects on the Strength of Graphene and Carbon Nanotube

  • Chapter
  • First Online:
Finite Element Modeling of Nanotube Structures

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 971 Accesses

Abstract

As with every material, the presence of a crystallographic defect influences the material properties. Defects can occur in various forms with significant effect. With high levels of such defects can lower the tensile strength by up to 85 % [1]. In general, three types of defects are reported in the CNTs [2, 3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.C. Charlier, Defects in carbon nanotubes. Acc. Chem. Res. 35(12), 1063–1069 (2002)

    Article  Google Scholar 

  2. A.L. Kalamkarov, A.V. Georgiades, S.K. Rokkam, V.P. Veedu, M.N. Ghasemi-Nejhad, Analytical and numerical techniques to predict carbon nanotubes properties. Int. J. Solids Struct. 43, 6832–6854 (2006)

    Article  MATH  Google Scholar 

  3. Q. Lu, Influence of random defects on the mechanical behavior of carbon Nanotubes through atomistic simulation. Ph.D. thesis, Delaware University (2005)

    Google Scholar 

  4. R. Andrews, D. Jacques, D. Qian et al., Purification and structural annealing carbon nanotubes at graphitization temperatures. Carbon 39, 1681 (2001)

    Article  Google Scholar 

  5. D.B. Mawhinney, V. Naumenko, A. Kuznetsova et al., Surface defect site density on single walled carbon nanotubes by titration. Chem. Phys. Lett. 6, 213 (2000)

    Article  Google Scholar 

  6. F.H. Gojny, J. Nastalczyk, Z. Roslaniec et al., Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study. Chem. Phys. Lett. 370, 820 (2003)

    Article  Google Scholar 

  7. F.H. Gojny, K. Schulte, Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Comp. Sci. Tech. 64, 2303 (2004)

    Article  Google Scholar 

  8. M.B. Nardelli, J.L. Fattebert, D. Orlikowski et al., Mechanical properties, defects and electronic behavior of carbon nanotubes. Carbon 38, 1703 (2000)

    Article  Google Scholar 

  9. M. Sammalkorpi, A. Krasheninnikov, A. Kuronen et al., Mechanical properties of carbon nanotubes with vacancies and related defects. Phys. Rev. B 70, 245 (2004)

    Article  Google Scholar 

  10. Q. Lu, B. Bhattacharya, Effect of randomly occurring stone–wales defects on mechanical properties of carbon nanotubes using atomistic simulation. Nanotechnology 16, 555 (2005)

    Article  Google Scholar 

  11. D.W. Brenner, Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990)

    Article  Google Scholar 

  12. T. Belytschko, S.P. Xiao, G.C. Schatz, R.S. Ruoff, Atomistic simulations of nanotube fracture. Phys. Rev. B 65, 235–430 (2002)

    Article  Google Scholar 

  13. J. Xiao, B. Gama, J. Gillespiejr, An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes. Int. J. Solids Struct. 42, 3075–3092 (2005)

    Article  MATH  Google Scholar 

  14. P. Zhang, Y. Huang, P.H. Geubelle et al., The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int. J. Solids Struct. 39, 3893 (2002)

    Article  MATH  Google Scholar 

  15. H. Jiang, P. Zhang, B. Liu et al., The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput. Mater. Sci. 28, 429 (2003)

    Article  Google Scholar 

  16. M. Rahmandoust, A. Öchsner, Influence of structural imperfections and doping on the mechanical properties of single-walled carbon nanotubes. J. Nano Res. 6, 185–196 (2009)

    Article  Google Scholar 

  17. A.J. Stone, D.J. Wales, Theoretical studies of icosahedral C60 and some related structures. Chem. Phys. Lett. 128, 501 (1986)

    Article  Google Scholar 

  18. M.F. Yu, B.S. Files, S. Arepalli et al., Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mokhtar Awang .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Awang, M., Mohammadpour, E., Muhammad, I.D. (2016). Influence of Defects on the Strength of Graphene and Carbon Nanotube. In: Finite Element Modeling of Nanotube Structures. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03197-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03197-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03196-5

  • Online ISBN: 978-3-319-03197-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics