Skip to main content

Zero Knowledge Proofs from Ring-LWE

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8257))

Abstract

Zero-Knowledge proof is a very basic and important primitive, which allows a prover to prove some statement without revealing anything else. Very recently, Jain et al. proposed very efficient zero-knowledge proofs to prove any polynomial relations on bits, based on the Learning Parity with Noise (LPN) problem (Asiacrypt’12).

In this work, we extend analogous constructions whose security is based on the Ring Learning with Errors (RLWE) problem by adapting the techniques presented by Ling et al. (PKC’13). Specifically, we show a simple zero-knowledge proof of knowledge (Σ-protocol) for committed values, and prove any polynomial relations in the underlying ring. I.e. proving committed ring elements m, m 1,...,m t satisfying m = f(m 1,...,m t ) for any polynomial f. Comparing to other existing Σ-protocols, the extracted witness (error vector) has length only small constant times than the one possessed by the prover. When representing ring element as elements in ℤ q , our protocol has amortized communication complexity \(\tilde{O}(\lambda\cdot|f|)\) with exponentially small soundness in security parameter λ, where |f| is the size of the circuit in ℤ q computing f.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  2. Boyar, J., Damgård, I., Peralta, R.: Short non-interactive cryptographic proofs. J. Cryptology 13(4), 449–472 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: Improved zero-knowledge identification with lattices. In: Heng, S.-H., Kurosawa, K. (eds.) ProvSec 2010. LNCS, vol. 6402, pp. 1–17. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Cayrel, P.-L., Véron, P., El Yousfi Alaoui, S.M.: A zero-knowledge identification scheme based on the q-ary syndrome decoding problem. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 171–186. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Cramer, R., Damgård, I.: Zero-knowledge proofs for finite field arithmetic, or: Can zero-knowledge be for free? In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 424–441. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Cramer, R., Damgård, I.: On the amortized complexity of zero-knowledge protocols. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 177–191. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Cramer, R., Damgård, I., Pastro, V.: On the amortized complexity of zero knowledge protocols for multiplicative relations. In: Smith, A. (ed.) ICITS 2012. LNCS, vol. 7412, pp. 62–79. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  9. Damgård, I.: On σ-protocol. In: Lecture on Cryptologic Protocol Theory (2004)

    Google Scholar 

  10. Damgård, I., Goldreich, O., Okamoto, T., Wigderson, A.: Honest verifier vs dishonest verifier in public coin zero-knowledge proofs. In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 325–338. Springer, Heidelberg (1995)

    Google Scholar 

  11. Feige, U., Shamir, A.: Zero knowledge proofs of knowledge in two rounds. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 526–544. Springer, Heidelberg (1990)

    Google Scholar 

  12. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof-systems. In: STOC, pp. 291–304 (1985)

    Google Scholar 

  13. Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  14. Haitner, I., Reingold, O.: Statistically-hiding commitment from any one-way function. In: STOC, pp. 1–10 (2007)

    Google Scholar 

  15. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: STOC, pp. 21–30 (2007)

    Google Scholar 

  16. Jain, A., Krenn, S., Pietrzak, K., Tentes, A.: Commitments and efficient zero-knowledge proofs from learning parity with noise. Cryptology ePrint Archive, Report 2012/513 (2012), http://eprint.iacr.org/

  17. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently secure identification schemes based on the worst-case hardness of lattice problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Kilian, J., Petrank, E.: An efficient noninteractive zero-knowledge proof system for np with general assumptions. J. Cryptology 11(1), 1–27 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Langlois, A., Stehle, D.: Worst-case to average-case reductions for module lattices. Cryptology ePrint Archive, Report 2012/090 (2012), http://eprint.iacr.org/

  20. Ling, S., Nguyen, K., Stehle, D., Wang, H.: Improved zero-knowledge proofs of knowledge for the isis problem, and applications. Cryptology ePrint Archive, Report 2012/569 (2012), http://eprint.iacr.org/

  21. Lyubashevsky, V.: Lattice-based identification schemes secure under active attacks. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 162–179. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Lyubashevsky, V.: Lattice signatures without trapdoors. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 738–755. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  23. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  24. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  26. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93. ACM (2005)

    Google Scholar 

  27. Stern, J.: A new identification scheme based on syndrome decoding. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 13–21. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Xie, X., Xue, R., Wang, M. (2013). Zero Knowledge Proofs from Ring-LWE. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds) Cryptology and Network Security. CANS 2013. Lecture Notes in Computer Science, vol 8257. Springer, Cham. https://doi.org/10.1007/978-3-319-02937-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02937-5_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02936-8

  • Online ISBN: 978-3-319-02937-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics