Abstract
The MMB block cipher (Modular Multiplication-based Block cipher) is an iterative block cipher designed by Daemen, Govaerts, and Vandewalle in 1993 as an improvement of the PES and IPES ciphers.
In this paper we present several new related-key differential characteristics of MMB. These characteristics can be used to form several related-key boomerangs to attack the full MMB. Using 220 adaptive chosen plaintexts and ciphertexts we recover all key bits in 235.2 time for the full MMB. Our attack was experimentally verified, and it takes less than 15 minutes on a standard Intel i5 machine to recover the full MMB key.
After showing this practical attack on the full key of the full MMB, we present attacks on extended versions of MMB with up to 8 rounds (which is two more rounds than in the full MMB). We recover 64 out of the 128 key in time of 232.2 for 7-round MMB, and time of 232 for 8-round MMB using 220 plaintexts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ashur, T., Dunkelman, O.: Source Code of the Attack. Available Upon Request (2013)
Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle Attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005)
Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. J. Cryptology 4(1), 3–72 (1991)
Daemen, J.: Cipher and Hash Function Design. Strategies based on linear and differential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, Govaerts, R., Vandewalle, J. (promotors) (1995)
Daemen, J., Govaerts, R., Vandewalle, J.: Block ciphers based on modular arithmetic. In: Wolfowicz, W. (ed.) Proceedings of the 3rd Symposium on State and Progress of Research in Cryptography, Rome, IT, Fondazione Ugo Bordoni, pp. 80–89 (1993)
Hong, S., Kim, J., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)
Jia, K., Chen, J., Wang, M., Wang, X.: Practical Attack on the Full MMB Block Cipher. In: Miri, A., Vaudenay, S. (eds.) SAC 2011. LNCS, vol. 7118, pp. 185–199. Springer, Heidelberg (2012)
Kelsey, J., Schneier, B., Wagner, D.: Related-key Cryptanalysis of 3-WAY, Biham-DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Okamoto, T., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)
Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The Related-Key Rectangle Attack - Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)
Lai, X., Massey, J.L.: A Proposal for a New Block Encryption Standard. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 389–404. Springer, Heidelberg (1991)
Lai, X., Massey, J.L.: Markov Ciphers and Differential Cryptanalysis. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer, Heidelberg (1991)
Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999)
Wang, M., Nakahara Jr., J., Sun, Y.: Cryptanalysis of the Full MMB Block Cipher. In: Jacobson Jr., M.J., Rijmen, V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 231–248. Springer, Heidelberg (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer International Publishing Switzerland
About this paper
Cite this paper
Ashur, T., Dunkelman, O. (2013). A Practical Related-Key Boomerang Attack for the Full MMB Block Cipher. In: Abdalla, M., Nita-Rotaru, C., Dahab, R. (eds) Cryptology and Network Security. CANS 2013. Lecture Notes in Computer Science, vol 8257. Springer, Cham. https://doi.org/10.1007/978-3-319-02937-5_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-02937-5_15
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-02936-8
Online ISBN: 978-3-319-02937-5
eBook Packages: Computer ScienceComputer Science (R0)