Skip to main content

The Cellular Chassis as the Basis for New Functionalities: Shortcomings and Requirements

  • Chapter
  • First Online:
Synthetic Biology

Part of the book series: Risk Engineering ((RISK))

Abstract

By default synthetic biology refers to construction of synthetic genetic programs. Yet, programs must be expressed within a machine, and the elusive but multipurpose “chassis” is usually taken for granted. The program replicates while the chassis reproduces, showing that maturation, ageing and senescence are core processes which must be taken into account in order to explore realistic outcomes. Functional analysis reveals the essential functions that we need to consider. Some are listed in the present chapter, with emphasis on the role of information recruitment. This is a built-in process of living organisms whose outcome is the production of an ever young progeny as a way to cope with ageing and senescence. Life innovates using Maxwell’s demons-like nanomachines. This is at odds with standard engineering practices, opening up new perspectives for synthetic biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo-Rocha, C. G., Fang, G., Schmidt, M., Ussery, D. W. & Danchin, A. (2013). From essential to persistent genes: a functional approach to constructing synthetic life. Trends in Genetics, 29(5), 273–279. doi:10.1016/j.tig.2012.11.001

  • Andersson, S. G., Karlberg, O., Canback, B. & Kurland, C. G. (2003). On the origin of mitochondria: a genomics perspective. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 358(1429), 165–177; discussion 177–169. doi:10.1098/rstb.2002.1193

  • Arisaka, F. (2005). Assembly and infection process of bacteriophage T4. Chaos, 15(4), 047502. doi:10.1063/1.2142136

  • Binder, P. M. & Danchin, A. (2011). Life’s demons: information and order in biology. What subcellular machines gather and process the information necessary to sustain life? EMBO Reports, 12(6), 495–499. doi:10.1038/embor.2011.83

  • Bittencourt, D., Oliveira, P. F., Prosdocimi, F. & Rech, E. L. (2012). Protein families, natural history and biotechnological aspects of spider silk. Genetics and Molecular Research, 11(3), 2360–2380. doi:10.4238/2012.August.13.10

  • Celler, K., Koning, R. I., Koster, A. J. & van Wezel, G. P. (2013). Multidimensional view of the bacterial cytoskeleton. Journal of Bacteriology, 195(8), 1627–1636. doi:10.1128/JB.02194-12

  • Chan, L. Y., Kosuri, S. & Endy, D. (2005). Refactoring bacteriophage T7. Molecular Systems Biology, 1, 0018. doi:10.1038/msb4100025

  • Charpa, U. (2012). Synthetic biology and the golem of prague: philosophical reflections on a suggestive metaphor. Perspectives in Biology and Medicine, 55(4), 554–570. doi:10.1353/pbm.2012.0036

  • Danchin, A. (1988). Complete genome sequencing: future and prospects. In A. Goffeau (Ed.), BAP 1988-1989 (pp. 1–24). Brussels: Commission of the European Communities.

    Google Scholar 

  • Danchin, A. (2003). The Delphic boat. What genomes tell us. (A. Quayle, Trans.). Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Danchin, A. (2009a). Bacteria as computers making computers. FEMS Microbiology Reviews, 33(1), 3–26.

    Article  MathSciNet  Google Scholar 

  • Danchin, A. (2009b). Cells need safety valves. BioEssays, 31(7), 769–773. doi:10.1002/bies.200900024

  • Danchin, A. (2009c). Information of the chassis and information of the program in synthetic cells. Systems and Synthetic Biology, 3(1–4), 125–134. doi:10.1007/s11693-009-9036-5

  • Danchin, A. (2012). Scaling up synthetic biology: Do not forget the chassis. FEBS Letters, 586(15), 2129–2137. doi:10.1016/j.febslet.2011.12.024

  • Danchin, A., Binder, P. M., & Noria, S. (2011). Antifragility and tinkering in biology (and in business); flexibility provides an efficient epigenetic way to manage risk. Genes, 2(4), 998–1016.

    Article  Google Scholar 

  • Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. (2013). Synthetic analog computation in living cells. Nature, 497(7451), 619–623. doi:10.1038/nature12148

  • Danielli, J. F. (1972). Artificial synthesis of new life forms. Bulletin of the Atomic Scientists, 28(10), 20–24.

    Google Scholar 

  • Danielli, J. F., & Davson, H. (1935). A contribution to the theory of permeability of thin films. Journal of Cellular and Comparative Physiology, 5(4), 495–508.

    Article  Google Scholar 

  • de Lorenzo, V. (2011). Beware of metaphors: Chasses and orthogonality in synthetic biology. Bioengineered Bugs, 2(1), 3–7. doi:10.4161/bbug.2.1.13388

  • Endy, D. (2005). Foundations for Engineering Biology. Nature, 438(7067), 449–453. doi:http://dx.doi.org/10.1038/nature04342

  • Fang, G., Rocha, E., & Danchin, A. (2005). How essential are nonessential genes? Molecular Biology and Evolution, 22(11), 2147–2156.

    Article  Google Scholar 

  • Fang, G., Rocha, E. P. & Danchin, A. (2008). Persistence drives gene clustering in bacterial genomes. BMC Genomics, 9(4). doi:10.1186/1471-2164-9-4.

  • Helmus, R. A., Liermann, L. J., Brantley, S. L. & Tien, M. (2012). Growth advantage in stationary-phase (GASP) phenotype in long-term survival strains of Geobacter sulfurreducens. FEMS Microbiology Ecology, 79(1), 218–228. doi:10.1111/j.1574-6941.2011.01211.x

  • Hosokawa, N., Hatakeyama, T. S., Kojima, T., Kikuchi, Y., Ito, H. & Iwasaki, H. (2011). Circadian transcriptional regulation by the posttranslational oscillator without de novo clock gene expression in Synechococcus. Proceedings of the National Academy of Sciences USA, 108(37), 15396–15401. doi:10.1073/pnas.1019612108

  • Itaya, M., Tsuge, K., Koizumi, M., & Fujita, K. (2005). Combining two genomes in one cell: stable cloning of the Synechocystis PCC6803 genome in the Bacillus subtilis 168 genome. Proceedings of the National Academy of Sciences USA, 102(44), 15971–15976.

    Article  Google Scholar 

  • Lagesen, K., Ussery, D. W. & Wassenaar, T. M. (2010). Genome update: The 1000th genome—a cautionary tale. Microbiology, 156(3), 603–608. doi:10.1099/mic.0.038257-0

  • Landauer, R. (1961). Irreversibility and heat generation in the computing process. IBM Journal of Research and Development, 5(3), 183–191.

    Article  MathSciNet  MATH  Google Scholar 

  • Larsabal, E. & Danchin, A. (2005). Genomes are covered with ubiquitous 11 bp periodic patterns, the “class A flexible patterns”. BMC Bioinformatics, 6, 206. doi:10.1186/1471-2105-6-206

  • Lartigue, C., Glass, J. I., Alperovich, N., Pieper, R., Parmar, P. P., Hutchison, C. A., III, et al. (2007). Genome transplantation in bacteria: Changing one species to another. Science, 317(5838), 632–638. doi:10.1126/science.1144622

  • Leduc, S. (1912). La Biologie Synthétique. Paris: A. Poinat. Available in http://www.peiresc.org/bstitre.htm

  • Maxwell, J. C. (1871). Theory of Heat. London: Longmans, Reed and Co. Available in http://books.google.fr/books?id=0p8AAAAAMAAJ&printsec=frontcover&hl=fr&source=gbs_ge_summary_r&cad=0#v=onepage

  • Mechold, U., Fang, G., Ngo, S., Ogryzko, V. & Danchin, A. (2007). YtqI from Bacillus subtilis has both oligoribonuclease and pAp-phosphatase activity. Nucleic Acids Research, 35(13), 4552–4561, doi:10.1093/nar/gkm462

  • Mechold, U., Ogryzko, V., Ngo, S. & Danchin, A. (2006). Oligoribonuclease is a common downstream target of lithium-induced pAp accumulation in Escherichia coli and human cells. Nucleic Acids Research, 34(8), 2364–2373. doi:10.1093/nar/gkl247

  • Mushegian, A. R., & Koonin, E. V. (1996). A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proceedings of the National Academy of Sciences USA, 93(19), 10268–10273.

    Article  Google Scholar 

  • Navarro Llorens, J. M., Tormo, A. & Martinez-Garcia, E. (2010). Stationary phase in gram-negative bacteria. FEMS Microbiological Reviews, 34(4), 476–495. doi:10.1111/j.1574-6976.2010.00213.x

  • Pearson, B., Snell, S., Bye-Nagel, K., Tonidandel, S., Heyer, L. J. & Campbell, A. M. (2011). Word selection affects perceptions of synthetic biology. Journal of Biological Engineering, 5(1), 9. doi:10.1186/1754-1611-5-9

  • Peisajovich, S. G. (2012). Evolutionary synthetic biology. ACS Synthetic Biology, 1(6), 199–210. doi:10.1021/sb300012g

  • Porcar, M., Danchin, A., de Lorenzo, V., Dos Santos, V. A., Krasnogor, N., Rasmussen, S., et al. (2011). The ten grand challenges of synthetic life. Systems and Synthetic Biology, 5(1–2), 1–9. doi:10.1007/s11693-011-9084-5

    Google Scholar 

  • Postic, G., Danchin, A. & Mechold, U. (2012). Characterization of NrnA homologs from Mycobacterium tuberculosis and Mycoplasma pneumoniae. RNA, 18(1), 155–165. doi:10.1261/rna.029132.111

  • Robinson, N. & Robinson, A. (2004). Molecular clocks deamidation of asparaginyl and glutaminyl residues in peptides and proteins. Cave Junction, OR: Althouse Press. Available in http://www.deamidation.org

  • Rocha, E. P., & Danchin, A. (2003). Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Research, 31(22), 6570–6577.

    Article  Google Scholar 

  • Rocha, E. P., Guerdoux-Jamet, P., Moszer, I., Viari, A., & Danchin, A. (2000a). Implication of gene distribution in the bacterial chromosome for the bacterial cell factory. Journal of Biotechnology, 78(3), 209–219.

    Article  Google Scholar 

  • Rocha, E. P., Sekowska, A., & Danchin, A. (2000b). Sulphur islands in the Escherichia coli genome: markers of the cell’s architecture? FEBS Letters, 476(1–2), 8–11.

    Article  Google Scholar 

  • Schmidt, M. (2010). Xenobiology: A new form of life as the ultimate biosafety tool. BioEssays, 32(4), 322–331. doi:http://dx.doi.org/10.1002/bies.200900147

  • Smoluchowski, M. (1914). Gültigkeitsgressen des zweiten Hauptsatzes der Wärmtheorie. In Vorträge über die kinetische Theorie der Materie und der Elektrizität gehalten in Göttingen auf Einladung der Kommission der Wolfskehlstiftung (Wolfskehlstiftung ed., Vol. 6, pp. 87–122, Mathematische Vorlesungen and der Universität Göttingen). Leipzig: Teubner. Available in http://www.bookprep.com/read/mdp.39015030967098

  • Springman, R., Molineux, I. J., Duong, C., Bull, R. J. & Bull, J. J. (2012). Evolutionary stability of a refactored phage genome. ACS Synthetic Biology, 1(9), 425–430. doi:10.1021/sb300040v

  • Stadler, P. F., Prohaska, S. J., Forst, C. V. & Krakauer, D. C. (2009). Defining genes: a computational framework. Theory in Biosciences, 128(3), 165–170. doi:10.1007/s12064-009-0067-y

  • Tamames, J., Gonzalez-Moreno, M., Mingorance, J., Valencia, A., & Vicente, M. (2001). Bringing gene order into bacterial shape. Trends in Genetics, 17(3), 124–126.

    Article  Google Scholar 

  • van den Belt, H. (2009). Playing God in Frankenstein’s footsteps: synthetic biology and the meaning of life. Nanoethics, 3(3), 257–268. doi:10.1007/s11569-009-0079-6

  • von Neumann, J. (1966). Theory of self-reproducing automata. Urbana: University of Illinois Press.

    Google Scholar 

  • Yoon, S. H., Hur, C. G., Kang, H. Y., Kim, Y. H., Oh, T. K. & Kim, J. F. (2005). A computational approach for identifying pathogenicity islands in prokaryotic genomes. BMC Bioinformatics, 6, 184. doi:10.1186/1471-2105-6-184

  • Younis, S. & Knight, T. (1993). Practical implementation of charge recovering asymptotically zero power CMOS. In G. Borriello, & C. Ebeling (Eds.), 1993 symposium on research on integrated systems Seattle (pp. 234–250). Washington: MIT Press.

    Google Scholar 

Download references

Acknowledgments

This work, which summarises a lecture held at the University of Bremen, on October 24th, 2012, benefited from ongoing discussions of the Stanislas Noria Network. It has been supported by the FP7 European Union programme Microme KBBE–2007–3-2-08-222886-2 grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine Danchin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Danchin, A. (2015). The Cellular Chassis as the Basis for New Functionalities: Shortcomings and Requirements. In: Giese, B., Pade, C., Wigger, H., von Gleich, A. (eds) Synthetic Biology. Risk Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-02783-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02783-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02782-1

  • Online ISBN: 978-3-319-02783-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics