Skip to main content

Applications of Symbolic Calculations and Polynomial Invariants to the Classification of Singularities of Differential Systems

  • Conference paper
Computer Algebra in Scientific Computing (CASC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8136))

Included in the following conference series:

  • 877 Accesses

Abstract

The goal of this paper is to present applications of symbolic calculations and polynomial invariants to the problem of classifying planar polynomial systems of differential equations. For these applications, we use some previously defined, and some new polynomial invariants. This is part of a much larger work by the authors together with J.C. Artés and J. Llibre which is in progress. We show here how polynomial invariants and their symbolic calculations are instrumental in obtaining the bifurcation diagram of the global configurations of singularities (finite and infinite), of quadratic differential systems having a unique simple finite singularity. This bifurcation diagram is given in the twelve-dimensional space of the coefficients of the systems, and the bifurcation points form an algebraic set. The classification of singularities is done using the notion of geometric equivalence relation of configurations of singularities, which is finer than the topological equivalence. The bifurcation diagram is expressed in terms of polynomial invariants. The results can, therefore, be applied to any family of quadratic systems, given in any normal form. Determining the configurations of singularities for any family of quadratic systems thus becomes a simple task using computer symbolic calculations.

This work was supported by NSERC. The second author is partially supported by FP7-PEOPLE-2012-IRSES-316338 and by the grant 12.839.08.05F from SCSTD of ASM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artés, J.C., Llibre, J.: Quadratic Hamiltonian vector fields. J. Differential Equations 107, 80–95 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artés, J.C., Llibre, J., Schlomiuk, D.: The geometry of quadratic differential systems with a weak focus of second order. International J. Bifurcation and Chaos 16, 3127–3194 (2006)

    Article  MATH  Google Scholar 

  3. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: From topological to geometric equivalence in the classification of singularities at infinity for quadratic vector fields. Rocky Mountain J. Math. (accepted)

    Google Scholar 

  4. Artés, J.C., Llibre, J., Schlomiuk, D., Vulpe, N.: Global analysis of infinite singularities of quadratic vector fields. CRM–Report No.3318. Université de Montreal (2011)

    Google Scholar 

  5. Artés, J.C., Llibre, J., Vulpe, N.I.: Singular points of quadratic systems: A complete classification in the coefficient space ℝ12. International J. Bifurcation and Chaos 18, 313–362 (2008)

    Article  MATH  Google Scholar 

  6. Artés, J.C., Llibre, J., Vulpe, N.: Complete geometric invariant study of two classes of quadratic systems. Electron. J. Differential Equations 2012(9), 1–35 (2012)

    Google Scholar 

  7. Artés, J.C., Llibre, J., Vulpe, N.: Quadratic systems with an integrable saddle: A complete classification in the coefficient space ℝ12. Nonlinear Analysis 75, 5416–5447 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Baltag, V.A.: Algebraic equations with invariant coefficients in qualitative study of the polynomial homogeneous differential systems. Bull. Acad. Sci. of Moldova. Mathematics 2, 31–46 (2003)

    Google Scholar 

  9. Baltag, V.A., Vulpe, N.I.: Affine-invariant conditions for determining the number and multiplicity of singular points of quadratic differential systems. Izv. Akad. Nauk Respub. Moldova Mat. 1, 39–48 (1993)

    MathSciNet  Google Scholar 

  10. Baltag, V.A., Vulpe, N.I.: Total multiplicity of all finite critical points of the polynomial differential system. Planar nonlinear dynamical systems (Delft, 1995). Differential Equations & Dynam. Systems 5, 455–471 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Bendixson, I.: Sur les courbes définies par des équations différentielles. Acta Math 24, 1–88 (1901)

    Article  MathSciNet  Google Scholar 

  12. Bularas, D., Calin, I., Timochouk, L., Vulpe, N.: T–comitants of quadratic systems: A study via the translation invariants. Delft University of Technology, Faculty of Technical Mathematics and Informatics, Report No. 96-90 (1996), ftp://ftp.its.tudelft.nl/publications/tech-reports/1996/DUT-TWI-96-90.ps.gz

  13. Calin, I.: On rational bases of GL(2,ℝ)-comitants of planar polynomial systems of differential equations. Bull. Acad. Sci. of Moldova. Mathematics 2, 69–86 (2003)

    MathSciNet  Google Scholar 

  14. Coppel, W.A.: A survey of quadratic systems. J. Differential Equations 2, 293–304 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dumortier, F.: Singularities of vector fields on the plane. J. Differential Equations 23, 53–106 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dumortier, F.: Singularities of Vector Fields. Monografias de Matemática, vol. 32. IMPA, Rio de Janeiro (1978)

    Google Scholar 

  17. Dumortier, F., Fiddelaers, P.: Quadratic models for generic local 3-parameter bifurcations on the plane. Trans. Am. Math. Soc. 326, 101–126 (1991)

    MathSciNet  MATH  Google Scholar 

  18. Dumortier, F., Llibre, J., Artés, J.C.: Qualitative Theory of Planar Differential Systems. Universitext. Springer, Berlin (2008)

    Google Scholar 

  19. Gonzalez Velasco, E.A.: Generic properties of polynomial vector fields at infinity. Trans. Amer. Math. Soc. 143, 201–222 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grace, J.H., Young, A.: The algebra of invariants. Stechert, New York (1941)

    Google Scholar 

  21. Hilbert, D.: Mathematische Probleme. In: Nachr. Ges. Wiss., Second Internat. Congress Math., Paris, pp. 253–297. Göttingen Math.–Phys., Kl (1900)

    Google Scholar 

  22. Jiang, Q., Llibre, J.: Qualitative classification of singular points. Qualitative Theory of Dynamical Systems 6, 87–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Llibre, J., Schlomiuk, D.: Geometry of quadratic differential systems with a weak focus of third order. Canad. J. Math. 6, 310–343 (2004)

    Article  MathSciNet  Google Scholar 

  24. Olver, P.J.: Classical Invariant Theory. London Math. Soc. Student Texts, vol. 44. Cambridge University Press (1999)

    Google Scholar 

  25. Nikolaev, I., Vulpe, N.: Topological classification of quadratic systems at infinity. J. London Math. Soc. 2, 473–488 (1997)

    Article  MathSciNet  Google Scholar 

  26. Pal, J., Schlomiuk, D.: Summing up the dynamics of quadratic Hamiltonian systems with a center. Canad. J. Math. 56, 583–599 (1997)

    Article  MathSciNet  Google Scholar 

  27. Popa, M.N.: Applications of algebraic methods to differential systems. Piteşi Univers., The Flower Power Edit., Romania (2004)

    Google Scholar 

  28. Roussarie, R.: Smoothness property for bifurcation diagrams. Publicacions Matemàtiques 56, 243–268 (1997)

    Article  MathSciNet  Google Scholar 

  29. Schlomiuk, D.: Algebraic particular integrals, integrability and the problem of the center. Trans. Amer. Math. Soc. 338, 799–841 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Schlomiuk, D.: Basic algebro-geometric concepts in the study of planar polynomial vector fields. Publicacions Mathemàtiques 41, 269–295 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Schlomiuk, D., Pal, J.: On the geometry in the neighborhood of infinity of quadratic differential phase portraits with a weak focus. Qualitative Theory of Dynamical Systems 2, 1–43 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Schlomiuk, D., Vulpe, N.I.: Geometry of quadratic differential systems in the neighborhood of infinity. J. Differential Equations 215, 357–400 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Schlomiuk, D., Vulpe, N.I.: Integrals and phase portraits of planar quadratic differential systems with invariant lines of at least five total multiplicity. Rocky Mountain J. Mathematics 38(6), 1–60 (2008)

    MathSciNet  Google Scholar 

  34. Schlomiuk, D., Vulpe, N.I.: Integrals and phase portraits of planar quadratic differential systems with invariant lines of total multiplicity four. Bull. Acad. Sci. of Moldova. Mathematics 1, 27–83 (2008)

    MathSciNet  Google Scholar 

  35. Schlomiuk, D., Vulpe, N.I.: The full study of planar quadratic differential systems possessing a line of singularities at infinity. J. Dynam. Differential Equations 20, 737–775 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Schlomiuk, D., Vulpe, N.I.: Global classification of the planar Lotka–Volterra differential system according to their configurations of invariant straight lines. J. Fixed Point Theory Appl. 8, 177–245 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. Schlomiuk, D., Vulpe, N.I.: The global topological classification of the Lotka–Volterra quadratic differential systems. Electron. J. Differential Equations 2012(64), 1–69 (2012)

    MathSciNet  Google Scholar 

  38. Seidenberg, E.: Reduction of singularities of the differential equation Ady = Bdx. Amer. J. Math. 90, 248–269 (1968); Zbl. 159, 333

    Article  MathSciNet  MATH  Google Scholar 

  39. Sibirskii, K.S.: Introduction to the Algebraic Theory of Invariants of Differential Equations, Translated from the Russian. Nonlinear Science: Theory and Applications. Manchester University Press, Manchester (1988)

    Google Scholar 

  40. Vulpe, N.: Characterization of the finite weak singularities of quadratic systems via invariant theory. Nonlinear Analysis. Theory, Methods and Applications 74(4), 6553–6582 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Vulpe, N.I.: Affine–invariant conditions for the topological discrimination of quadratic systems with a center. Differential Equations 19, 273–280 (1983)

    MATH  Google Scholar 

  42. Vulpe, N.I.: Polynomial bases of comitants of differential systems and their applications in qualitative theory, “Ştiinţa”, Kishinev (1986) (in Russian)

    Google Scholar 

  43. Żołądek, H.: Quadratic systems with center and their perturbations. J. Differential Equations 109, 223–273 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Schlomiuk, D., Vulpe, N. (2013). Applications of Symbolic Calculations and Polynomial Invariants to the Classification of Singularities of Differential Systems. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2013. Lecture Notes in Computer Science, vol 8136. Springer, Cham. https://doi.org/10.1007/978-3-319-02297-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02297-0_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02296-3

  • Online ISBN: 978-3-319-02297-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics