Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 91))

  • 1832 Accesses

Abstract

An intuitive tell-tale of intelligence is the ability animals possess, particularly humans, of learning from experience. So, in fact, when we set out in designing truly intelligent systems in robotics, the general aim is to conjure up an architecture that is equally capable of:

  • reasoning about the surrounding world given observed data, thereby generating a representation - see Chapter 2 to recall what this means in terms of perception;

  • learning better representations for the future from the data it is gathering in the present, therefore preparing for generalisation - i.e., increasing cognitive performance by refining its internal model of the world as new data becomes available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tenenbaum, J.B., Kemp, C., Griffiths, T.L., Goodman, N.D.: How to grow a mind: Statistics, structure, and abstraction. Science 331(6022), 1279–1285 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Colas, F., Diard, J., Bessiére, P.: Common Bayesian Models For Common Cognitive Issues. Acta Biotheoretica 58(2-3), 191–216 (2010)

    Article  Google Scholar 

  3. Darwiche, A.: Modeling and reasoning with Bayesian networks. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  4. Ferreira, J.F., Pinho, C., Dias, J.: Implementation and Calibration of a Bayesian Binaural System for 3D Localisation. In: 2008 IEEE International Conference on Robotics and Biomimetics (ROBIO 2008), Bangkok, Thailand (2009)

    Google Scholar 

  5. Fox, E.: Bayesian Nonparametric Learning of Complex Dynamical Phenomena. Ph.D. thesis, MIT, Cambridge, MA (2009)

    Google Scholar 

  6. Koller, D., Friedman, N.: Probabilistic graphical models: principles and techniques. MIT Press (2009)

    Google Scholar 

  7. Hy, R.L., Bessiére, P.: Probabilistic Reasoning and Decision Making in Sensory-Motor Systems. In: Bessiére, P., Laugier, C., Siegwart, R. (eds.) Playing to Train Your Video Game Avatar. STAR, vol. 46, pp. 263–278. Springer, Heidelberg (2008)

    Google Scholar 

  8. Kemp, C., Tenenbaum, J.B.: The discovery of structural form. Proceedings of the National Academy of Sciences 105(31), 10687–10692, 1091–6490 (2008), doi:10.1073/pnas.0802631105 ISSN 0027-8424, PMID: 18669663

    Google Scholar 

  9. Bergemann, D., Välimäki, J.: Bandit problems. Technical report, Cowles Foundation for Research in Economics, Yale University (2006)

    Google Scholar 

  10. Florez-Larrahondo, G.: Incremental learning of discrete hidden markov models. Ph.D. thesis, Mississippi State University, Mississippi State, MS, USA. AAI3193417 (2005)

    Google Scholar 

  11. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research 4, 237–285 (1996)

    Google Scholar 

  12. Buntine, W.L.: Operations for Learning with Graphical Models. Journal of Artificial Intelligence Research (AI Access Foundation) 2, 159–225 (1994) ISSN 11076-9757

    Google Scholar 

  13. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Series B (Methodological) 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  14. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics 41(1), 164–171 (1970)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Filipe Ferreira .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ferreira, J.F., Dias, J. (2014). Probabilistic Learning. In: Probabilistic Approaches to Robotic Perception. Springer Tracts in Advanced Robotics, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-02006-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02006-8_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02005-1

  • Online ISBN: 978-3-319-02006-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics