Skip to main content

Increased Antimicrobial Activity of Cheese Coatings Through Particle Size Reduction

  • Chapter
  • First Online:
Particulate Products

Part of the book series: Particle Technology Series ((POTS,volume 19))

Abstract

This chapter discusses the results of reducing the particle size distribution of an anti-microbial solid to facilitate a better use of the material. The product, an antifungal agent is size reduced using a wet-stirred media mill. The obtained product has the size of around 180 nm. The way of grinding is described and the used sizing techniques discussed. In the last part the product is characterized and tested in its application. Here it is shown that the reduced size gives a better performance against fungal anti-microbial infections than a product containing larger particles. This is explained by discussing the coverage, as well as the diffusion of the product through a layer of material, in this case a cheese surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Becker, M., Schwedes, J.: Comminution of ceramics in stirred media mills and wear of grinding beads. Powder Technol. 105, 374–381 (1999)

    Article  Google Scholar 

  2. Bel, F.H., Frances, C., Mamourian, A.: Investigations on ultra-fine grinding of titanium dioxide in a stirred media mill. Powder Technol. 105(1–3), 362–373 (1999)

    Google Scholar 

  3. Bernhardt, C., Reinsch, E., Husemann, K.: The influence of suspension properties on ultra-fine grinding in stirred ball mills. Powder Technol. 105(1–3), 357–361 (1999)

    Article  Google Scholar 

  4. Bilgili, E., Hamey, R., Scarlett, B.: Nano-milling of pigment agglomerates using a wet stirred media mill: Elucidation of the kinetics and breakage mechanisms. Chem. Eng. Sci. 61(1), 149–157 (2006)

    Article  Google Scholar 

  5. Breitung-Faes, S., Kwade, A.: Nano particle production in high-power density mills. Chem. Eng. Res. Design. 86, 390–394 (2008)

    Article  Google Scholar 

  6. Davies J.T.: A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent, Gas/Liquid and Liquid/Liquid Interface; Proceedings of International Congress Surface Activity, pp. 426–438 (1957)

    Google Scholar 

  7. Davies, L., Dollimore, D., Sharp, J.H.: Sedimentation of supsensions: Implications of theories of hindered settling. Powder Technol. 13, 123–132 (1975)

    Article  Google Scholar 

  8. Fick, A.: Poggendorff’s annal. Physik 94, 59 (1855)

    Google Scholar 

  9. Fick, A.: Phil. Mag. 10, 30 (1855)

    Google Scholar 

  10. Fox, J.B.: Diffusion of chloride, nitrite, and nitrate in beef and pork. J. Food Sci. 45(860), 1740–1744 (1980)

    Article  Google Scholar 

  11. Gao, M., Forssberg, E.: Prediction of product size distributions for a stirred ball mill. Powder Technol. 84(2), 101–106 (1985)

    Article  Google Scholar 

  12. Gennadios, A., Weller, C.L., Testin, R.F.: Temperature effect on oxygen permeability of edible protein-based film. J. Food Sci. 58, 212–219 (1993)

    Article  Google Scholar 

  13. Gill, C.O.: A review, intrinsic bacteria in meat. J. Appl. Bacteriol. 47, 367–378 (1979)

    Article  Google Scholar 

  14. Gontard, N., Guilbert, S., Cuq, J.: Edible wheat gluten film: Influence of the main process variables on film properties using response surface methodology. J. Food Sci. 57, 190–199 (1992)

    Article  Google Scholar 

  15. Griffin, W.C.: Classification of surface-active agents by ‘HLB’. J. Soc. Cosmetic Chem. 1, 311 (1949)

    Google Scholar 

  16. Griffin, W.C.: Calculation of HLB values of non-ionic surfactants. J. Soc. Cosmet. Chem. 5, 259 (1954)

    MathSciNet  Google Scholar 

  17. Grubenmann, A.: Particle size distribution and aspect ratio of organic pigments. Part. Part. Syst. Charact. 3(4), 179–186 (1986)

    Article  Google Scholar 

  18. Gustavsson, J., Cederberg, C., Sonesson, U., van Otterdijk, R., Meybeck, A.: Global food losses and food waste. Study conducted for the Internat. Congress at Interpack Düsseldorf, Germany Published by the FAO. (http://www.fao.org/docrep/014/mb060e/mb060e00.pdf) (2011)

  19. He, M., Wang, Y., Forssberg, E.: Parameter effects on wet ultrafine grinding of limestone through slurry rheology in a stirred media mill. Powder Technol. 161, 10–21 (2006)

    Article  Google Scholar 

  20. Hee, P. Van, Meesters, G.M.H., Wildeboer, W.J., Hennart, S.L.A, Vis, A.J.: Stabilized micronized particles; WO Patent # 2008/110626

    Google Scholar 

  21. Hennart, S.L.A., Wildeboer, W.J., Meesters, G.M.H.: Study of the process of stirred ball milling of poorly water soluble organic products using factorial design. Powder Technol. 198(1), 56–60 (2009)

    Article  Google Scholar 

  22. Herbst, J.A., Sepulveda, J.L.: Fundamentals of fine and ultra-fine grinding in a stirred ball mill. International Powder and Bulk Solids Handling Conference, Chicago, pp. 452–470 (1978)

    Google Scholar 

  23. Horter, D., Dressman, J.B.: Influence of physicochemical properties on dissolution of drugs in the gastrointestinal tract. Ad. Drug Deliv. Rev. 46, 75–87 (2001)

    Article  Google Scholar 

  24. Hou, T.-H., Su, C.-H., Liu, W.-L.: Parameters optimization of a nano-particle wet milling process using the taguchi method, response surface method and genetic algorithm. Powder Technol. 173, 153–162 (2007)

    Article  Google Scholar 

  25. Howorth, C.J., Lee, W.E., Rainforth, W.M., Messer, P.F.: Contamination rates from Ce and Y-TZP ball milling media. Br. Ceram. Trans. J. 90, 18–21 (1990)

    Google Scholar 

  26. Hu, J., Johnston, K.P., Williams, R.O.: Nanoparticles engineering process for enhancing the dissolution rates of poorly water soluble drugs. Drug Devel. Ind. Pharm 30(3), 233–245 (2004)

    Article  Google Scholar 

  27. Jankovic, A.: Variables affecting the fine grinding of minerals using stirred mills. Minerals Eng. 16, 337–345 (2003)

    Article  Google Scholar 

  28. Janssen, L., Warmoeskerken, M.: Transport Phenomena Data Companion. Edward Arnold Ltd, London (1987). ISBN 0-7131-3618-9

    Google Scholar 

  29. Kärger, J., Grinberg, F., Heitjans, P.: Diffusion Fundamentals. Leipziger Universitätsverlag, Leipzig (2005). ISBN ISBN: 3-86583-073-0

    Google Scholar 

  30. Laidlaw, I., Steinmetz, M.: Introduction to differential sedimentation. In: Scott, D.J., Harding, S.E., Rowe, A.J. (eds.) Analytical Ultracentrifugation Techniques and Methods, pp. 270–290. Royal Society of Chemistry, Cambridge (2005)

    Google Scholar 

  31. Lange, H.: Comparative test of methods to determine particle size and particle size distribution in the submicron range. Part. Part. Syst. Charact. 12(3), 148–157 (1995)

    Article  ADS  Google Scholar 

  32. Lett, J.T.: Measurement of single strand breaks by sedimentation in alkaline sucrose gradients. In: Friedberg, E.C., Hanawalt, P.C. (eds.) DNA repair – A Laboratory Manual of Research Procedures, vol. 1, pp. 363–378. Marcel Dekker, New York (1981)

    Google Scholar 

  33. Mende, S., Stenger, F., Peukert, W., Schwedes, J.: Mechanical production and stabilization of submicron particles in stirred media mills. Powder Technol. 132, 64–73 (2003)

    Article  Google Scholar 

  34. Mura, P., Faucci, M.T., Parrini, P.L.: Effects of grinding with micro-crystalline cellulose and cyclodextrins on the ketoprofen physicochemical properties. Drug Dev. Ind. Pharm. 27, 119–128 (2001)

    Article  Google Scholar 

  35. Noyes, A.A., Whitney, W.R.: The rate of solution of solid substances in their own solutions. J. Am. Chem. Soc. 19, 930–936 (1897)

    Article  Google Scholar 

  36. Ouattara, B., Simard, R.E., Piette, G., Begin, A., Holley, R.A.: Diffusion of acetic and propionic acids from chitosan-based antimicrobial packaging films. J. Food Sci. 65, 768–773 (2000)

    Article  Google Scholar 

  37. Ozdemir, J.D.: Floros, analysis and modeling of potassium sorbate diffusion through edible whey protein films. J. Food Sci. 65, 149–155 (2001)

    Google Scholar 

  38. Ozdemir, M., Floros, J.D.: Film composition effect on diffusion of potassium sorbate through whey protein films. J. Food Eng. 68, 511–516 (2003)

    Google Scholar 

  39. Perez-Gago, M.B., Krochta, J.M.: Water vapor permeability of whey protein emulsion films as affected by pH. J. Food Sci. 64, 695–698 (1999)

    Article  Google Scholar 

  40. Redl, A., Gontard, N., Guilbert, S.: Determination of sorbic acid diffusivity in edible wheat gluten and lipid based films. J. Food Sci. 61, 116–120 (1996)

    Article  Google Scholar 

  41. Redner, S.: Statistical model for the fracture disordered media. In: Hulin, J.P. (ed.) Fragmentation, pp. 321–328. Elsevier, London (1990)

    Google Scholar 

  42. Saito, M., Ugajin, T., Nozawa, Y., Sadzuka, Y., Miyagishima, A., Sonobe, T.: Preparation and dissolution characteristics of griseofulvin solid dispersions with saccharides. Int. J. Pharm. 249, 71–79 (2002)

    Article  Google Scholar 

  43. Teerakarn, A., Hirt, D.E., Action, J.C., Rieck, J.R., Dawson, P.L.: Nisin diffusion in protein films: Effect of film type and temperature. J. Food Sci. 67(8), 3019–3025 (2002)

    Article  Google Scholar 

  44. Varinot, C., Hiltgun, S., Pons, M.-N., Dodds, J.: Identification of the fragmentation mechanisms in wet-phase fine grinding in a stirred bead mill. Chem. Eng. Sci. 52(20), 3605–3612 (1997)

    Article  Google Scholar 

  45. Vippagunta, S.R., Maul, K.A., Tallavajhala, S., Grant, D.J.: Solid-state characterization of nifedipine solid dispersions. Int. J. Pharm. 236, 111–123 (2002)

    Article  Google Scholar 

  46. Vojdani, F., Torres, J.A.: Potassium sorbate permeability of methyl-cellulose and hydroxypropyl methyl-cellulose coatings: Effect of fatty acids. J. Food Sci. 55, 841–846 (1990)

    Article  Google Scholar 

  47. Warin, F., Gekas, V., Voirin, A., Dejmek, P.: Sugar diffusivity in agar gel/milk bilayer systems. J. Food Sci. 62, 454–456 (1997)

    Article  Google Scholar 

  48. Yamada, T., Saito, N., Imai, T., Otagiri, M.: Effect of grinding with hydroxypropyl cellulose on the dissolution and particle size of a poorly water-soluble drug. Chem. Pharm. Bulletin 47, 1311–1313 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel M. H. Meesters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meesters, G.M.H., Hennart, S.L.A. (2014). Increased Antimicrobial Activity of Cheese Coatings Through Particle Size Reduction. In: Merkus, H., Meesters, G. (eds) Particulate Products. Particle Technology Series, vol 19. Springer, Cham. https://doi.org/10.1007/978-3-319-00714-4_15

Download citation

Publish with us

Policies and ethics