Skip to main content

Classical Aspects of Hawking Radiation Verified in Analogue Gravity Experiment

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 870))

Abstract

There is an analogy between the propagation of fields on a curved spacetime and shallow water waves in an open channel flow. By placing a streamlined obstacle into an open channel flow we create a region of high velocity over the obstacle that can include wave horizons. Long (shallow water) waves propagating upstream towards this region are blocked and converted into short (deep water) waves. This is the analogue of the stimulated Hawking emission by a white hole (the time inverse of a black hole). The measurements of amplitudes of the converted waves demonstrate that they appear in pairs and are classically correlated; the spectra of the conversion process is described by a Boltzmann-distribution; and the Boltzmann-distribution is determined by the change in flow across the white hole horizon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The original derivation by Hawking radiation predicts that the quantum field excitations in the initial state—which are responsible for the late time radiation—have frequencies exponentially higher than the frequency associated with the Planck scale [5, 12].

References

  1. Adrian, R.J.: Twenty years of particle image velocimetry. Exp. Fluids 39, 159–169 (2005)

    Article  Google Scholar 

  2. Pokazeyev, K.V., Rozenberg, A.D., Badulin, S.I.: A laboratory study of the transformation of regular gravity-capillary waves on inhomogeneous flows. Izv. Atmos. Ocean. Phys. 19(10) (1983)

    Google Scholar 

  3. Barceló, C., Liberati, S., Visser, M.: Refringence, field theory, and normal modes. Class. Quantum Gravity 19, 2961–2982 (2002)

    Article  ADS  MATH  Google Scholar 

  4. Barceló, C., Liberati, S., Visser, M.: Analogue gravity. Living Rev. Relativ. 8, 12 (2005)

    ADS  Google Scholar 

  5. Brout, R., Massar, S., Parentani, R., Spindel, P.: Hawking radiation without trans-Planckian frequencies. Phys. Rev. D 52, 4559–4568 (1995)

    Article  ADS  Google Scholar 

  6. Carr, S.B., Giddings, B.J.: Quantum black holes. Sci. Am. 292(5), 48–55 (2005)

    Article  ADS  Google Scholar 

  7. Corley, S., Jacobson, T.: Hawking spectrum and high frequency dispersion. Phys. Rev. D 54, 1568–1586 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  8. Einsten, A.: Zur Quantentheorie der Strahlung. Phys. Z. XVIII, 121–128 (1917)

    Google Scholar 

  9. Haus, H.A., Mullen, J.A.: Phys. Rev. 128, 2407–2413 (1962)

    Article  ADS  Google Scholar 

  10. Tedford, E.W., Pieters, R., Lawrence, G.A.: Symmetric Holmboe instabilities in a laboratory exchange flow. J. Fluid Mech. 636, 137–153 (2009)

    Article  MATH  Google Scholar 

  11. Hawking, S.W.: Black hole explosions. Nature 248, 30–31 (1974)

    Article  ADS  Google Scholar 

  12. Jacobson, T.: Trans-Planckian redshifts and the substance of the space-time river. Prog. Theor. Phys. Suppl. 136, 1–17 (1999)

    Article  ADS  Google Scholar 

  13. Bonneau, M., Lopes, R., Ruaudel, J., Boiron, D., Westbrook, C.I., Jaskula, J.-C., Partridge, G.B.: An acoustic analog to the dynamical Casimir effect in a Bose–Einstein condensate (2012). arXiv:1207.1338v1

  14. Kheruntsyan, K.V., Jaskula, J.-C., Deuar, P., Bonneau, M., Partridge, G.B., Ruaudel, J., Lopes, R., Boiron, D., Westbrook, C.I.: Violation of the Cauchy-Schwarz inequality with matter waves. Phys. Rev. Lett. 108, 260401 (2012)

    Article  ADS  Google Scholar 

  15. Lawrence, G.A.: Steady flow over an obstacle. J. Hydraul. Eng. 113(8), 981–991 (1987)

    Article  Google Scholar 

  16. Richartz, M., Prain, A., Weinfurtner, S., Liberati, S.: Superradiant scattering of dispersive fields (2012)

    Google Scholar 

  17. Rousseaux, G., Maissa, P., Mathis, C., Coullet, P., Philbin, T.G., et al.: Horizon effects with surface waves on moving water. New J. Phys. 12, 095018 (2010)

    Article  ADS  Google Scholar 

  18. Rousseaux, G., Mathis, C., Maissa, P., Philbin, T.G., Leonhardt, U.: Observation of negative-frequency waves in a water tank: a classical analogue to the hawking effect? New J. Phys. 10(5), 053015 (2008)

    Article  ADS  Google Scholar 

  19. Schützhold, R., Unruh, W.G.: Gravity wave analogs of black holes. Phys. Rev. D 66, 044019 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. Suastika, I.K.: Wave blocking. Ph.D. thesis, Technische Universiteit Delft, The Netherlands (2004). http://repository.tudelft.nl/file/275166/201607

  21. Unruh, W.G.: Notes on black hole evaporation. Phys. Rev. D 14, 870 (1976)

    Article  ADS  Google Scholar 

  22. Unruh, W.G.: Experimental black hole evaporation. Phys. Rev. Lett. 46, 1351–1353 (1981)

    Article  ADS  Google Scholar 

  23. Unruh, W.G.: Dumb holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D 51(6), 2827–2838 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  24. Unruh, W.G.: Sonic analogue of black holes and the effects of high frequencies on black hole evaporation. Phys. Rev. D 51(6), 2827–2838 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  25. Unruh, W.G.: Dumb holes: analogues for black holes. Philos. Trans. R. Soc. Lond. A 366, 2905–2913 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Unruh, W.G.: Quantum noise in amplifiers and Hawking/Dumb-hole radiation as amplifier noise (2011)

    Google Scholar 

  27. Visser, M.: Acoustic propagation in fluids: an unexpected example of Lorentzian geometry. gr-qc/9311028 (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silke Weinfurtner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Weinfurtner, S., Tedford, E.W., Penrice, M.C.J., Unruh, W.G., Lawrence, G.A. (2013). Classical Aspects of Hawking Radiation Verified in Analogue Gravity Experiment. In: Faccio, D., Belgiorno, F., Cacciatori, S., Gorini, V., Liberati, S., Moschella, U. (eds) Analogue Gravity Phenomenology. Lecture Notes in Physics, vol 870. Springer, Cham. https://doi.org/10.1007/978-3-319-00266-8_8

Download citation

Publish with us

Policies and ethics