Skip to main content

Gabrio Piola and Mathematical Physics

  • Chapter
  • First Online:
The complete works of Gabrio Piola: Volume I

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 38))

  • 535 Accesses

Abstract

In the past, the term ‘mathematical physics’ had substantially two meanings. On one hand, it simply indicated modern physics, which considered mathematics its own language; in this sense, Galileo, Newton, Kepler, etc., were distinguished mathematical physicists. On the other hand, it pointed to the branch of science that developed in the XIX century and had enabled the solution of some specific problems governed by partial differential equations, such as, for instance, heat propagation, potential theory, theory of elasticity; in this sense Fourier, Lamé, Gauss, Piola, Beltrami, etc., stood among the most important mathematical physicists. Today the term indicates an academic discipline, practiced by mathematicians, having some principles of physical nature at its basis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barbin E, Guitart R (2013) Mathematical physics in the style of Gabriel Lamé and the treatise of Emile Mathieu. In: Barbin E, Pisano R (eds) (2013) The dialectic relation between physics and mathematics in the XIXth century. Springer, Dordrecht

    Google Scholar 

  2. Capecchi D (2012) History of virtual work laws. A history of mechanical prospective. Springer, Milan

    Google Scholar 

  3. Capecchi D, Ruta G, Tazzioli R (2006) Enrico Betti: Teoria del potenziale. Hevelius, Benevento

    Google Scholar 

  4. Capecchi D, Ruta G (2011) La scienza delle costruzioni in Italia nell’Ottocento. Un’analisi storica dei fondamenti della scienza delle costruzuoni. Springer, Milan

    Google Scholar 

  5. Carnot L (1803) Principes fondamentaux de l’équilibre et du mouvement. Deterville, Paris

    Google Scholar 

  6. Cauchy AL (1827) De la pression ou tension dans un corps solides. In: Cauchy AL (1882-1974) Oeuvres complètes, (27 vols). Gauthier-Villars, Paris, s II, vol 7, pp 60-81

    Google Scholar 

  7. Corbini A (2006) La teoria della scienza nel XIII secolo. I commenti agli analitici secondi. Edizioni del Galluzzo, Firenze

    Google Scholar 

  8. Euler L (1752) Découverte d’un nouveau principe de mécanique (1750). Mémoires de l’académie des sciences de Berlin 6:185-217

    Google Scholar 

  9. Euler L (1761) Principia motus fluidorum (1753). Novi Commentari Academiae Petropolitanae, vol. 6. pp. 271-311

    Google Scholar 

  10. Fourier J (1822) Théorie analytique de la chaleur. Firmin-Didot, Paris

    Google Scholar 

  11. Gauss CF (1840) Allgemeine Lehrsätze in Beziehung auf die im verkehrten Verhältnisse wirkenden Anziehungs- und Abstossungskräfte. In Gauss CF (1863-1933) Werke. Göttingen, vol. 5, pp. 194-242

    Google Scholar 

  12. Green G (1828) An essay of the application of the mathematical analysis to the theories of electricity and Magnetism. In: Green G (1871) Mathematical papers of the late George Green. McMillan and co., London, pp. 1–82

    Google Scholar 

  13. Green G (1835) On the determination of the exterior and interior attractions of ellipsoids of variable densities. In: Green G (1871) Mathematical papers of the late George Green. McMillan and co., London, pp. 187–222

    Google Scholar 

  14. Hilbert D (1904) Über das Dirichletsche Prinzip. Mathematische Annalen, 59: 161–186

    Google Scholar 

  15. Hilbert D (1905) Über das Dirichletsche Prinzip. Journal für die reine und angewandte Mathematik, 129: 63–67

    Google Scholar 

  16. Kline M (1972) Mathematical thought from ancient to modern times. Oxford University Press, Oxford

    Google Scholar 

  17. Lagrange JL (1780) Theorie de la libration de la Lune. In: Lagrange JL (1867-1892) Oeuvres de Lagrange. Serret JA, [Darboux G] (eds). Gauthier-Villars, Paris, vol 5, pp 5-124

    Google Scholar 

  18. Lagrange JL (1788) Méchanique analitique, Desaint, Paris. Anastatic copy (1989). Jacques Gabay, Paris

    Google Scholar 

  19. Lagrange JL (1811) Mécanique analytique (tome premier). In: Lagrange JL (11867-1892) Oeuvres de Lagrange. Serret JA, [Darboux G] (eds). Gauthier-Villars, Paris, vol 11

    Google Scholar 

  20. Lagrange JL (1815) Mécanique analytique (tome second). In: Lagrange JL (11867-1892) Oeuvres de Lagrange. Serret JA, [Darboux G] (eds). Gauthier-Villars, Paris, vol 12

    Google Scholar 

  21. Lamé G (1852) Leçons sur la théorie mathematique de l’élasticité des corps solides. Bachelier, Paris

    Google Scholar 

  22. Lamé G (1857) Leçons sur les fonctions inverses des transcendantes et les surfaces isotherme. Mallet-Bachelier, Paris

    Google Scholar 

  23. Lamé G (1861) Leçons sur la théorie analytique de la chaleur. Mallet-Bachelier, Paris

    Google Scholar 

  24. Lamé G (1859) Leçons sur les coordonnées curvilignes et leurs diverses applications. Mallet-Bachelier, Paris

    Google Scholar 

  25. Lamé G (1863) Note sur la marche á suivre pour découvrir le principe seul véritablement universel de la nature physique. Comptes rendus de l’Académie des sciences 56: 983-989

    Google Scholar 

  26. Laplace P S (1785) Théorie des attractions des sphéro’ides et de la figure des planétes. Mémoires de l’Académie des sciences de Paris (1782), pp. 113-196

    Google Scholar 

  27. Laplace P S (1829/an VII) Traité de mécanique céléste, vol.1. Duprat, Paris

    Google Scholar 

  28. Laplace P S (1785)Théorie des attractions des sphéro’ides et de la figure des planétes. Mémoires de l’Académie des sciences de Paris (1782), pp. 113-196

    Google Scholar 

  29. Lennox JG (1985) Aristotle, Galileo and the Mixed Sciences. In Reinterpreting Galileo, ed. William Wallace, Washington D.C, pp. 29-51.

    Google Scholar 

  30. Piola G (1825b) Sull’applicazione de’ principj della meccanica analitica del Lagrange ai principali problemi. Regia Stamperia, Milano

    Google Scholar 

  31. Piola G (1832) La meccanica de’ corpi naturalmente estesi trattata col calcolo delle variazioni. Opuscoli matematici e fisici di diversi autori. Giusti, Milano, Vol. 1, pp. 201–236. See also Piola G (1833) La meccanica de’ corpi naturalmente estesi trattata col calcolo delle variazioni. Giusti, Milano

    Google Scholar 

  32. Piola G (1836) Nuova analisi per tutte le questioni della meccanica molecolare. Memorie di matematica e fisica della Società italiana delle scienze, vol 21, pp. 155–321

    Google Scholar 

  33. Piola G (1848) Intorno alle equazioni fondamentali del movimento di corpi qualsivogliono considerati secondo la naturale loro formae costituzione. Memorie di matematica e fisica della Società italiana delle scienze, vol 24, pp. 1–186. Translated in this volume

    Google Scholar 

  34. Piola G (1856) Di un principio controverso della Meccanica Analitica di Lagrange e delle sue molteplici applicazioni. Memorie dell’Istituto Lombardo, vol 6, pp. 389–496. Translated in this volume.

    Google Scholar 

  35. Pisano R, Capecchi D (2009) La théorie analytique de la chaleur. Notes on Fourier and Lamé. Sabix, 44: 87-93

    Google Scholar 

  36. Poisson SD (1813) Rémarques sur une équation qui se présente dans la théorie des attractions des sphéro’ides. Nouveau Bulletin de la Sociétᅵé Philomatique de Paris 3: 388-392

    Google Scholar 

  37. Poisson SD (1829) Mémoire sur l’équilibre et le mouvement des corps élastiques. Mémoires de l’Académie des sciences de l’Institut de France, vol 8, pp 357–570

    Google Scholar 

  38. Weierstrass K (1895) Über die sogenannte Dirichlet’sche Princip. In: Mathematische Werke, 7 voll., 1894-1927, Berlin, vol. 2, pp. 49-54.

    Google Scholar 

  39. Schlote KH (2013) The emergence of mathematical physics at the university of Leipzig. In: Barbin E, Pisano R (eds) (2013) The dialectic relation between physics and mathematics in the XIXth century. Springer, Dordrecht

    Google Scholar 

  40. Tarantino P (2012) La trattazione aristotelica delle scienze subordinate negli Analitici secondi. Rivista di storia della losoafia 3:445-469

    Google Scholar 

  41. Tazzioli R (2001) Green’s function in some contributions of 19th century mathematicians. Historia Mathematica 28: 232-252

    Google Scholar 

  42. Truesdell CA (1968) Essay in the history of mechanics. Spinger, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Capecchi, D. (2014). Gabrio Piola and Mathematical Physics. In: dell'Isola, F., Maier, G., Perego, U., Andreaus, U., Esposito, R., Forest, S. (eds) The complete works of Gabrio Piola: Volume I. Advanced Structured Materials, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-00263-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-00263-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-00262-0

  • Online ISBN: 978-3-319-00263-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics