Skip to main content

Part of the book series: Grundlehren der mathematischen Wissenschaften ((GL,volume 348))

  • 7486 Accesses

Abstract

After the Poincaré and logarithmic Sobolev inequalities, this chapter is devoted to the investigation of Sobolev inequalities. Sobolev inequalities play a central role in analysis, providing in particular compact embeddings and tight connections with heat kernels bounds. They are also deeply linked with the geometric structure of the underlying state space through conformal invariance. The study here focuses on the aspects of Sobolev inequalities in the context of Markov diffusion operators and semigroups. The chapter starts with a brief exposition of the classical Sobolev inequalities on the model spaces, namely the Euclidean, spherical and hyperbolic spaces. Next, various definitions of Sobolev-type inequalities in the Markov Triple context are emphasized, in particular (logarithmic) entropy-energy and Nash-type inequalities. The basic equivalence between Sobolev inequalities and (uniform) heat kernel bounds (ultracontractivity) is studied in the further sections. Local inequalities under the semigroup are investigated next, providing in particular a heat flow approach to the celebrated Li–Yau parabolic inequality. The sharp Sobolev inequality under curvature-dimension condition, covering the example of the standard sphere, is established in the framework of this monograph. Further sections describe the conformal invariance properties of Sobolev inequalities, and, as a consequence, the sharp Sobolev inequalities in the Euclidean and hyperbolic spaces on the basis of the one on the sphere, Gagliardo–Nirenberg inequalities and non-linear porous medium and fast diffusion equations and their geometric counterparts, with in particular a fast diffusion approach to several Sobolev inequalities of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  1. R.A. Adams, Sobolev Spaces. Pure and Applied Mathematics, vol. 65 (Academic Press, New York, 1975)

    MATH  Google Scholar 

  2. R.A. Adams, J.J.F. Fournier, Sobolev Spaces, 2nd edn. Pure and Applied Mathematics, vol. 140 (Elsevier/Academic Press, Amsterdam, 2003)

    MATH  Google Scholar 

  3. T. Aubin, Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J. Math. Pures Appl. 55(3), 269–296 (1976)

    MATH  MathSciNet  Google Scholar 

  4. T. Aubin, Espaces de Sobolev sur les variétés Riemanniennes. Bull. Sci. Math. 100(2), 149–173 (1976)

    MATH  MathSciNet  Google Scholar 

  5. T. Aubin, Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11(4), 573–598 (1976)

    MATH  MathSciNet  Google Scholar 

  6. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampère Equations. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252 (Springer, New York, 1982)

    Book  MATH  Google Scholar 

  7. T. Aubin, Some Nonlinear Problems in Riemannian Geometry. Springer Monographs in Mathematics (Springer, Berlin, 1998)

    Book  MATH  Google Scholar 

  8. D. Bakry, L’hypercontractivité et son utilisation en théorie des semigroupes, in Lectures on Probability Theory, Saint-Flour, 1992. Lecture Notes in Math., vol. 1581 (Springer, Berlin, 1994), pp. 1–114

    Chapter  Google Scholar 

  9. D. Bakry, Functional inequalities for Markov semigroups, in Probability Measures on Groups: Recent Directions and Trends (Tata Inst. Fund. Res, Mumbai, 2006), pp. 91–147

    Google Scholar 

  10. D. Bakry, F. Bolley, I. Gentil, Dimension dependent hypercontractivity for Gaussian kernels. Probab. Theory Relat. Fields 154(3), 845–874 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. D. Bakry, T. Coulhon, M. Ledoux, L. Saloff-Coste, Sobolev inequalities in disguise. Indiana Univ. Math. J. 44(4), 1033–1074 (1995)

    MathSciNet  Google Scholar 

  12. D. Bakry, M. Ledoux, Sobolev inequalities and Myers’s diameter theorem for an abstract Markov generator. Duke Math. J. 85(1), 253–270 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. D. Bakry, M. Ledoux, A logarithmic Sobolev form of the Li-Yau parabolic inequality. Rev. Mat. Iberoam. 22(2), 683–702 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  14. F. Baudoin, N. Garofalo, Curvature-dimension inequalities and Ricci lower bounds for sub-Riemannian manifolds with transverse symmetries. Preprint, 2012

    Google Scholar 

  15. W. Beckner, Inequalities in Fourier analysis. Ann. Math. (2) 102(1), 159–182 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. (2) 138(1), 213–242 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. W. Beckner, Geometric asymptotics and the logarithmic Sobolev inequality. Forum Math. 11(1), 105–137 (1999)

    MATH  MathSciNet  Google Scholar 

  18. W. Beckner, M. Pearson, On sharp Sobolev embedding and the logarithmic Sobolev inequality. Bull. Lond. Math. Soc. 30(1), 80–84 (1998)

    Article  MathSciNet  Google Scholar 

  19. J. Bennett, A. Carbery, M. Christ, T. Tao, The Brascamp-Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17(5), 1343–1415 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. M.-F. Bidaut-Véron, L. Véron, Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math. 106(3), 489–539 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. H. Brézis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, New York, 2011)

    MATH  Google Scholar 

  22. E.A. Carlen, Superadditivity of Fisher’s information and logarithmic Sobolev inequalities. J. Funct. Anal. 101(1), 194–211 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  23. E.A. Carlen, J.A. Carrillo, M. Loss, Hardy-Littlewood-Sobolev inequalities via fast diffusion flows. Proc. Natl. Acad. Sci. USA 107(46), 19696–19701 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. E.A. Carlen, S. Kusuoka, D.W. Stroock, Upper bounds for symmetric Markov transition functions. Ann. Inst. Henri Poincaré Probab. Stat. 23(2), 245–287 (1987)

    MATH  MathSciNet  Google Scholar 

  25. E.A. Carlen, E.H. Lieb, M. Loss, A sharp analog of Young’s inequality on S N and related entropy inequalities. J. Geom. Anal. 14(3), 487–520 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. E.A. Carlen, M. Loss, Sharp constant in Nash’s inequality. Int. Math. Res. Not. 7, 213–215 (1993)

    Article  MathSciNet  Google Scholar 

  27. J.A. Carrillo, A. Jüngel, P.A. Markowich, G. Toscani, A. Unterreiter, Entropy dissipation methods for degenerate parabolic problems and generalized Sobolev inequalities. Monatshefte Math. 133(1), 1–82 (2001)

    Article  MATH  Google Scholar 

  28. G. Carron, Inégalités isopérimétriques de Faber-Krahn et conséquences, in Actes de la Table Ronde de Géométrie Différentielle, Luminy, 1992. Sémin. Congr., vol. 1 (Soc. Math. France, Paris, 1996), pp. 205–232

    Google Scholar 

  29. D. Cordero-Erausquin, B. Nazaret, C. Villani, A mass-transportation approach to sharp Sobolev and Gagliardo-Nirenberg inequalities. Adv. Math. 182(2), 307–332 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. T. Coulhon, Inégalités de Gagliardo-Nirenberg pour les semi-groupes d’opérateurs et applications. Potential Anal. 1(4), 343–353 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  31. E.B. Davies, Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics, vol. 92 (Cambridge University Press, Cambridge, 1989)

    Book  MATH  Google Scholar 

  32. M. Del Pino, J. Dolbeault, Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. 81(9), 847–875 (2002)

    MATH  MathSciNet  Google Scholar 

  33. H. Delin, A proof of the equivalence between Nash and Sobolev inequalities. Bull. Sci. Math. 120(4), 405–411 (1996)

    MATH  MathSciNet  Google Scholar 

  34. J. Demange, Porous media equation and Sobolev inequalities under negative curvature. Bull. Sci. Math. 129(10), 804–830 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on manifolds with positive curvature. J. Funct. Anal. 254(3), 593–611 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. J. Dolbeault, M.J. Esteban, M. Kowalczyk, M. Loss, Sharp interpolation inequalities on the sphere: new methods and consequences. Chin. Ann. Math., Ser. B 34(1), 99–112 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Dolbeault, M. Esteban, M. Loss, Nonlinear flows and rigidity results on compact manifolds. Preprint, 2013

    Google Scholar 

  38. O. Druet, E. Hebey, The AB program in geometric analysis: sharp Sobolev inequalities and related problems. Mem. Am. Math. Soc. 160, 761 (2002), pp. viii+98

    MathSciNet  Google Scholar 

  39. L.C. Evans, Partial Differential Equations, 2nd edn. Graduate Studies in Mathematics, vol. 19 (American Mathematical Society, Providence, 2010)

    MATH  Google Scholar 

  40. E.B. Fabes, D.W. Stroock, A new proof of Moser’s parabolic Harnack inequality using the old ideas of Nash. Arch. Ration. Mech. Anal. 96(4), 327–338 (1986)

    MATH  MathSciNet  Google Scholar 

  41. É. Fontenas, Sur les constantes de Sobolev des variétés riemanniennes compactes et les fonctions extrémales des sphères. Bull. Sci. Math. 121(2), 71–96 (1997)

    MATH  MathSciNet  Google Scholar 

  42. E. Gagliardo, Proprietà di alcune classi di funzioni in più variabili. Ric. Mat. 7, 102–137 (1958)

    MATH  MathSciNet  Google Scholar 

  43. B. Gidas, J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34(4), 525–598 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  44. D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order. Classics in Mathematics (Springer, Berlin, 2001). Reprint of the 1998 edition

    MATH  Google Scholar 

  45. A. Grigor’yan, Heat Kernel and Analysis on Manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47 (American Mathematical Society, Providence, 2009)

    MATH  Google Scholar 

  46. E. Hebey, Sobolev Spaces on Riemannian Manifolds. Lecture Notes in Mathematics, vol. 1635 (Springer, Berlin, 1996)

    MATH  Google Scholar 

  47. E. Hebey, Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities. Courant Lecture Notes in Mathematics, vol. 5 (New York University Courant Institute of Mathematical Sciences, New York, 1999)

    Google Scholar 

  48. E. Hebey, M. Vaugon, The best constant problem in the Sobolev embedding theorem for complete Riemannian manifolds. Duke Math. J. 79(1), 235–279 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  49. S. Ilias, Constantes explicites pour les inégalités de Sobolev sur les variétés Riemanniennes compactes. Ann. Inst. Fourier (Grenoble) 33(2), 151–165 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  50. M. Ledoux, Remarks on logarithmic Sobolev constants, exponential integrability and bounds on the diameter. J. Math. Kyoto Univ. 35(2), 211–220 (1995)

    MATH  MathSciNet  Google Scholar 

  51. P. Li, Geometric Analysis (Cambridge University Press, Cambridge, 2012)

    Book  Google Scholar 

  52. P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156(3–4), 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  53. E.H. Lieb, M. Loss, Analysis, 2nd edn. Graduate Studies in Mathematics, vol. 14 (American Mathematical Society, Providence, 2001)

    MATH  Google Scholar 

  54. V.G. Maz’ja, Sobolev Spaces. Springer Series in Soviet Mathematics (Springer, Berlin, 1985). Translated from the Russian by T.O. Shaposhnikova

    MATH  Google Scholar 

  55. V.G. Maz’ya, Sobolev Spaces with Applications to Elliptic Partial Differential Equations. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 342 (Springer, Heidelberg, 2011). augmented ed.

    MATH  Google Scholar 

  56. J. Moser, A Harnack inequality for parabolic differential equations. Commun. Pure Appl. Math. 17, 101–134 (1964)

    Article  MATH  Google Scholar 

  57. J. Moser, A sharp form of an inequality by N. Trudinger. Indiana Univ. Math. J. 20, 1077–1092 (1970/71)

    Article  MathSciNet  Google Scholar 

  58. J. Nash, Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80, 931–954 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  59. V.H. Nguyen, Sharp weighted Sobolev and Gagliardo-Nirenberg inequalities on half-spaces via mass transport and consequences. Preprint, 2013

    Google Scholar 

  60. L. Nirenberg, On elliptic partial differential equations. Ann. Sc. Norm. Super. Pisa, Cl. Sci. (3) 13, 115–162 (1959)

    MATH  MathSciNet  Google Scholar 

  61. J.R. Norris, Heat kernel asymptotics and the distance function in Lipschitz Riemannian manifolds. Acta Math. 179(1), 79–103 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  62. E. Onofri, On the positivity of the effective action in a theory of random surfaces. Commun. Math. Phys. 86(3), 321–326 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  63. G. Rosen, Minimum value for c in the Sobolev inequality ∥ϕ 3∥≤c∥∇ϕ3. SIAM J. Appl. Math. 21, 30–32 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  64. O.S. Rothaus, Hypercontractivity and the Bakry-Emery criterion for compact Lie groups. J. Funct. Anal. 65(3), 358–367 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  65. L. Saloff-Coste, Convergence to equilibrium and logarithmic Sobolev constant on manifolds with Ricci curvature bounded below. Colloq. Math. 67(1), 109–121 (1994)

    MATH  MathSciNet  Google Scholar 

  66. L. Saloff-Coste, Aspects of Sobolev-Type Inequalities. London Mathematical Society Lecture Note Series, vol. 289 (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  67. L. Saloff-Coste, Sobolev inequalities in familiar and unfamiliar settings, in Sobolev Spaces in Mathematics. I. Int. Math. Ser. (N. Y.), vol. 8 (Springer, New York, 2009), pp. 299–343

    Chapter  Google Scholar 

  68. L. Saloff-Coste, The heat kernel and its estimates, in Probabilistic Approach to Geometry. Adv. Stud. Pure Math., vol. 57 (Math. Soc. Japan, Tokyo, 2010), pp. 405–436

    Google Scholar 

  69. R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature. J. Differ. Geom. 20(2), 479–495 (1984)

    MATH  MathSciNet  Google Scholar 

  70. R. Schoen, Variational theory for the total scalar curvature functional for Riemannian metrics and related topics, in Topics in Calculus of Variations, Montecatini Terme, 1987. Lecture Notes in Math., vol. 1365 (Springer, Berlin, 1989), pp. 120–154

    Chapter  Google Scholar 

  71. R. Schoen, S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar curvature. Invent. Math. 92(1), 47–71 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  72. S. Sobolev, Sur un théorème d’analyse fonctionnelle. Mat. Sb. (N.S.) 4, 471–497 (1938). (Russian)

    MATH  Google Scholar 

  73. A.J. Stam, Some inequalities satisfied by the quantities of information of Fisher and Shannon. Inf. Control 2, 101–112 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  74. G. Talenti, Best constant in Sobolev inequality. Ann. Mat. Pura Appl. (4) 110, 353–372 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  75. H. Triebel, Theory of Function Spaces. Monographs in Mathematics, vol. 78 (Birkhäuser, Basel, 1983)

    Book  Google Scholar 

  76. H. Triebel, Theory of Function Spaces. II. Monographs in Mathematics, vol. 84 (Birkhäuser, Basel, 1992)

    Book  MATH  Google Scholar 

  77. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. (Johann Ambrosius Barth, Heidelberg, 1995)

    MATH  Google Scholar 

  78. N.S. Trudinger, On imbeddings into Orlicz spaces and some applications. J. Math. Mech. 17, 473–483 (1967)

    MATH  MathSciNet  Google Scholar 

  79. S.R.S. Varadhan, On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun. Pure Appl. Math. 20, 431–455 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  80. N.T. Varopoulos, Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63(2), 240–260 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  81. N.T. Varopoulos, L. Saloff-Coste, T. Coulhon, Analysis and Geometry on Groups. Cambridge Tracts in Mathematics, vol. 100 (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  82. J.L. Vázquez, The Porous Medium Equation. Oxford Mathematical Monographs (The Clarendon Press, Oxford, 2007). Mathematical theory

    MATH  Google Scholar 

  83. C. Villani, Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58 (American Mathematical Society, Providence, 2003)

    MATH  Google Scholar 

  84. C. Villani, Optimal Transport, old and new. Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338 (Springer, Berlin, 2009)

    Book  MATH  Google Scholar 

  85. F.B. Weissler, Logarithmic Sobolev inequalities for the heat-diffusion semigroup. Trans. Am. Math. Soc. 237, 255–269 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  86. F.B. Weissler, Two-point inequalities, the Hermite semigroup, and the Gauss-Weierstrass semigroup. J. Funct. Anal. 32(1), 102–121 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  87. W.P. Ziemer, Sobolev spaces and functions of bounded variation, in Weakly Differentiable Functions. Graduate Texts in Mathematics, vol. 120 (Springer, New York, 1989)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bakry, D., Gentil, I., Ledoux, M. (2014). Sobolev Inequalities. In: Analysis and Geometry of Markov Diffusion Operators. Grundlehren der mathematischen Wissenschaften, vol 348. Springer, Cham. https://doi.org/10.1007/978-3-319-00227-9_6

Download citation

Publish with us

Policies and ethics