Skip to main content

Mercury-Vapor Lamps

  • Reference work entry
  • First Online:
Handbook of Advanced Lighting Technology
  • 4322 Accesses

Abstract

High-pressure mercury-vapor lamps are nowadays available for more than 80 years and will keep importance for the future at least for disinfection applications or lacquer curing. Although the lighting market changed dramatically, Hg lamps are still present; moreover they formed the basis for most of the advanced technologies. Mercury is not only an ingredient in metal-halide lamps but also in many sodium-vapor lamps or in xenon lamps, because of its outstanding material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almeida NA, Benilov MS, Hechtfischer U, Naidis GV (2009) Investigating near-anode plasma layers of very high-pressure arc discharges. J Phys D Appl Phys 42(4)

    Google Scholar 

  • Al-Saqabi BNI, Peach G (1987) Unified theories of the pressure broadening and shift of spectral-lines. 2. Van der waals interactions. J Phys B At Mol Opt Phys 20(6):1175–1191

    Article  Google Scholar 

  • Andanson P, Cheminat B, Halbique AM (1978) Numerical-solution of Abel integral-equation – application to plasma spectroscopy. J Phys D Appl Phys 11(3):209–215

    Article  Google Scholar 

  • Araoud Z, Ahmed RB, Hamida MBB, Franke S, Stambouli M, Charrada K, Zissis G (2010) A two-dimensional modeling of the warm-up phase of a high-pressure mercury discharge lamp. Phys Plasmas 17(6):063505–063512

    Article  Google Scholar 

  • Bartels H (1949a) Ãœber Linienemission aus inhomogener Schicht. I. Teil. Z Phys 125:597–614

    Article  MATH  Google Scholar 

  • Bartels H (1949b) Ãœber Linienemission aus inhomogener Schicht. II. Teil. Z Phys 126:108–140

    Article  MATH  Google Scholar 

  • Beckers J, Manders F, Aben PCH, Stoffels WW, Haverlag M (2008) Pulse, dc and ac breakdown in high pressure gas discharge lamps. J Phys D Appl Phys 41(14):144028

    Article  Google Scholar 

  • Benilov MS (2008) Understanding and modelling plasma–electrode interaction in high-pressure arc discharges: a review. J Phys D Appl Phys 41(14):144001

    Article  Google Scholar 

  • Burm KTAL (2005) Continuum radiation spectroscopy in a high-pressure argon-mercury lamp. J Quant Spectrosc Radiat Transf 95(1):93–100

    Article  Google Scholar 

  • Cowan RD, Dieke GH (1948) Self-absorption of spectrum lines. Rev Mod Phys 20(2):418–455

    Article  Google Scholar 

  • Czichy M, Hartmann T, Mentel J, Awakowicz P (2008) Ignition of mercury-free high intensity discharge lamps. J Phys D Appl Phys 41(14):144027

    Article  Google Scholar 

  • Derra G, Moench H, Fischer E, Giese H, Hechtfischer U, Hensler G, Koerber A, Niemann U, Noertemann FC, Pekarski P et al (2005) UHP lamp systems for projection applications. J Phys D Appl Phys 38(17):2995–3010

    Article  Google Scholar 

  • Drawin HW, Felenbok P (1965) Data for plasmas in local thermodynamic equilibrium. Gauthier-Villars, Paris

    Google Scholar 

  • Dribinski V, Ossadtchi A, Mandelshtam V, Reisler H (2002) Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method. Rev Sci Instrum 73(7):9

    Article  Google Scholar 

  • Ebeling W, Kraeft WD, Kremp D (1976) Theory of bound states. In: Rompe R, Steenbeck M (eds) Ergebnisse der Plasmaphysik und der Gaselektronik. Akademie, Berlin

    Google Scholar 

  • Elenbaas W (1951) The high pressure mercury vapour discharge. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Elenbaas W (1972) Light sources. The Macmillan, London

    Google Scholar 

  • European Parliament T (2005) Directive 2005/32/EC of the European Parliament and of the Council of 6 July 2005 on energy-using products. Off J Eur Union L191:29–58

    Google Scholar 

  • European Parliament T (2009a) Commission Regulation (EC) No 244/2009 of March 2009 on ecodesign requirements for non-directional household lamps. Off J Eur Union L76:3–16

    Google Scholar 

  • European Parliament T (2009b) Commission Regulation (EC) No 245/2009 of 18 March 2009 on ecodesign requirements for fluorescent lamps and high intensity discharges. Off J Eur Union L076:17–44

    Google Scholar 

  • Flesch P (2006) Light and light sources: high-intensity discharge lamps. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  • Franke S, Lange H, Schoepp H, Witzke HD (2006) Temperature dependence of VUV transmission of synthetic fused silica. J Phys D Appl Phys 39(14):3042–3046

    Article  Google Scholar 

  • Ginesin BA, Karpov MI, Glebovsky VG, Karelin BA (2001) High-purity solid solution as a new type of molybdenum alloy. J Adv Mater 33(3):3–9

    Google Scholar 

  • Griem HR (1974) Spectral line broadening by plasmas. Academic, New York/London

    Google Scholar 

  • Griem HR (1997) Principles of plasma spectroscopy. In: Haines MG, Hopcraft KI, Hutchinson IH, Surko CM, Schindler K (eds) Cambridge monographs on plasma physics. Cambridge University Press, Cambridge

    Google Scholar 

  • Hansen S, Getchius J, Brumleve TR (1998) Vapor pressure of metal bromides and iodides. APL Engineered Materials, Urbana

    Google Scholar 

  • Hartel G, Schöpp H, Hess H, Hitzschke L (1999) Radiation from an alternating current high-pressure mercury discharge: a comparison between experiments and model calculations. J Appl Phys 85(10):7076–7088

    Article  Google Scholar 

  • Heberlein J, Mentel J, Pfender E (2010) The anode region of electric arcs: a survey. J Phys D Appl Phys 43(2):023001

    Google Scholar 

  • Jack AG, Koedam M (1974) Energy balances for some high pressure gas discharge lamps. In: Journal of IES, Annual IES conference, Light division. N.V. Philips’ Gloeilampenfrabrieken, Eindhoven, pp 323–329

    Google Scholar 

  • Käning M, Schalk B, Schneidenbach H (2007) Experimental determination of parameters for molecular continuum radiation of rare-earth iodides. J Phys D Appl Phys 40(13):3815–3822

    Article  Google Scholar 

  • Karabourniotis D (1983) Plasma temperature determination from the maximum intensity of a symmetric self-reversed line. J Phys D Appl Phys 16:1267–1281

    Article  Google Scholar 

  • Karabourniotis D (1984) Correction: plasma temperature determination from the maximum intensity of a symmetric self-reversed line. J Phys D Appl Phys 17(6):1325

    Article  Google Scholar 

  • Karabourniotis D (2005) Validity of plasma temperature determination from line self-reversal. In: Proceedings of the 27th ICPIG, no. 08–160. ICPIG, Eindhoven

    Google Scholar 

  • Karabourniotis D (2006) Effect of the one-parameter model on the spectral intensity of a self-absorbed line. High Temp Mater Process US 10(3):479–490

    Article  Google Scholar 

  • Kenty C (1942) Pressures and temperatures in high-pressure mercury lamps. Phys Rev 61:545

    Google Scholar 

  • Kirby MW (1997) Mercury lamps. In: Coaton JR, Marsden AM (eds) Lamps and lighting, 4th edn. Routledge, New York, pp 254–262

    Google Scholar 

  • Kohmoto K (1999) Phosphors for lamps. In: Shionoya SH, Yen W (eds) High-pressure mercury lamps. CRC Press, Boca Raton, pp 375–379, 2000 Corporate Blvd NW, Boca Raton, FL 33431

    Google Scholar 

  • Lichtenberg S, Dabringhausen L, Langenscheidt O, Mentel J (2005) The plasma boundary layer of HID-cathodes: modelling and numerical results. J Phys D Appl Phys 38(17):3112–3127

    Article  Google Scholar 

  • Lister GG, Lawler JE, Lapatovich WP, Godyak VA (2004) The physics of discharge lamps. Rev Mod Phys 76(2):541–598

    Article  Google Scholar 

  • Lochte-Holtgreven W (1995) Plasma diagnostics. American Institute of Physics, New York

    Google Scholar 

  • Redwitz M, Dabringhausen L, Lichtenberg S, Langenscheidt O, Heberlein J, Mentel J (2006) Arc attachment at HID anodes: measurements and interpretation. J Phys D Appl Phys 39(10):2160–2179

    Article  Google Scholar 

  • Schneidenbach H, Franke S (2008) Basic concepts of temperature determination from self-reversed spectral lines. J Phys D Appl Phys 41(14):144016

    Article  Google Scholar 

  • Sobota A, van Veldhuizen EM, Stoffels WW (2008) Discharge ignition near a dielectric. IEEE Trans Plasma Sci 36(4):912–913

    Article  Google Scholar 

  • Sobota A, Lebouvier A, Kramer NJ, van Veldhuizen EM, Stoffels WW, Manders F, Haverlag M (2009) Speed of streamers in argon over a flat surface of a dielectric. J Phys D Appl Phys 42(1):015211

    Google Scholar 

  • Stambouli M, Charrada K, Costache C, Damelincourt JJ (1999) Modeling the warm-up phase of a high-pressure-lamps lighting network. IEEE Trans Plasma Sci 27(3):646–654

    Article  Google Scholar 

  • Stormberg H-P, Schäfer R (1983) Time-dependent behavior of high-pressure mercury discharges. J Appl Phys 54(8):4338–4347

    Article  Google Scholar 

  • Waymouth JF (1971) Electric discharge lamps. M.I.T. Press, Cambridge, MA

    Google Scholar 

  • Wendt M (2011) Net emission coefficients of argon iron plasmas with electron Stark widths scaled to experiments. J Phys D Appl Phys 44(12):125201

    Article  Google Scholar 

  • Wendt M, Franke S (2008) Broadening constants of mercury lines as determined from experimental side-on spectra. J Phys D Appl Phys 41(14):144018

    Article  Google Scholar 

  • Wendt M, Peters S, Loffhagen D, Kloss A, Kettlitz M (2009) Breakdown characteristics of high pressure xenon lamps. J Phys D Appl Phys 42(18)

    Google Scholar 

  • Wharmby DO (2008) Estimates of molecular absorption cross-sections in mercury plasmas at very high pressures using self-reversed line diagnostics. J Phys D Appl Phys 41(14):144017

    Article  Google Scholar 

  • Zalach J, Franke S (2013) Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp. J Appl Phys 113(4):043303–043307

    Article  Google Scholar 

  • Zalach J, Araoud Z, Charrada K, Franke S, Schoepp H, Zissis G (2011) Experimental and theoretical investigations on the warm-up of a high-pressure mercury discharge lamp. Phys Plasmas 18:033511

    Article  Google Scholar 

  • Zalach J, Franke S, Schöpp H (2012) Experimental characterization of the warm-up of mercury lamps. In: Devonshire R, Zissis G (eds) Light sources. FAST-LS Ltd, Troy, pp 157–158, Belmayne House, 99 Clarkhouse Rd., Sheffield, S10 2LN, UK

    Google Scholar 

  • Zwicker H (ed) (1995) Evaluation of plasma parameters in optically thick plasmas. American Institute of Physics, New York, pp 214–249

    Google Scholar 

Download references

Acknowledgments

The authors kindly acknowledge valuable contributions to this chapter by Stuart Mucklejohn, Hartmut Schneidenbach and Manfred Kettlitz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffen Franke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Schöpp, H., Franke, S. (2017). Mercury-Vapor Lamps. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00176-0_4

Download citation

Publish with us

Policies and ethics