Skip to main content

Deficits of neuronal glutamatergic markers in the caudate nucleus in schizophrenia

  • Conference paper
Neuropsychiatric Disorders An Integrative Approach

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURALTRANS,volume 72))

Abstract

Abnormal glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia. In the present study we investigated two potential neuronal glutamatergic markers, the Excitatory Amino Acid Transporter 3 (EAAT3) and the Vesicular Glutamate Transporter 1 (VGluTl), in post-mortem striatal tissue from control subjects and from subjects with schizophrenia (n= 15 per group). We also investigated the possible influence of chronic antipsychotic administration (typical and atyp ical) on striatal VGluTl expression in the rat brain. We found deficits in EAAT3 in all striatal regions examined in schizophrenia when compared to controls. Following correction for confounding factors (post-mortem interval), these deficits only remained significant in the caudate nucleus (p = 0.019). We also found significant deficits in VGluTl in the caudate nucleus (p = 0.009) in schizophrenia. There were no significant differences in VGluTl in the striatum of antipsychotic treated rats when compared to their vehicle treated controls.

These authors contributed equally to the work

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abdul-Monim Z, Neill JC, Reynolds GP (2007) Sub-chronic psychoto mimetic phencyclidine induces deficits in reversal learning and al terations in parvalbumin-immunoreactive expression in the rat. J Psychopharmacol 21: 198–205

    Article  PubMed  CAS  Google Scholar 

  • Abdul-Monim Z, Reynolds GP, Neill JC (2006) The effect of atypical and classical antipsychotics on sub-chronic PCP-induced cognitive deficits in a reversal-learning paradigm. Behav Brain Res 169: 263–273

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neu rosci 13: 266–271

    Article  CAS  Google Scholar 

  • Aparicio-Legarza MI, Cutts AJ, Davis B, Reynolds GP (1997) Deficits of [3H]D-aspartate binding to glutamate uptake sites in striatal and accumbens tissue in patients with schizophrenia. Neurosci Lett 232: 13–16

    Article  PubMed  CAS  Google Scholar 

  • Aparicio-Legarza MI, Davis B, Hutson PH, Reynolds GP (1998) Increased density of glutamate/N-methyl-D-aspartate receptors in putamen from schizophrenic patients. Neurosci Lett 241: 143–146

    Article  PubMed  CAS  Google Scholar 

  • Bellocchio EE, Hu H, Pohorille A, Chan J, Pickel VM, Edwards RH (1998) The localization of the brain-specific inorganic phosphate transporter suggests a specific presynaptic role in glutamatergic transmission. J Neurosci 18: 8648–8659

    PubMed  CAS  Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia-implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13: 272–276

    Article  PubMed  CAS  Google Scholar 

  • Eastwood SL, Harrison PJ (2005) Decreased expression of vesicular glutamate transporter 1 and complexin II mRNAs in schizophrenia: further evidence for a synaptic pathology affecting glutamate neurons. Schizophr Res 73: 159–172

    Article  PubMed  CAS  Google Scholar 

  • Eblen F, Graybiel AM (1995) Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. J Neurosci 15: 5999–6013

    PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Troyer MD, Pahner I, Nygaard GO, Tran CH, Reimer RJ, Bellocchio EE, Fortin D, Storm-Mathisen J, Edwards RH (2001) The expression of vesicular glutamate transporters defines two classes of excitatory synapse. Neuron 31: 247–260

    Article  PubMed  CAS  Google Scholar 

  • Fremeau RT Jr, Voglmaier S, Seal RP, Edwards RH (2004) VGLUTs define subsets of excitatory neurons and suggest novel roles for glutamate. Trends Neurosci 27: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Goff DC, Coyle JT (2001) The emerging role of glutamate in the pa thophysiology and treatment of schizophrenia. Am J Psychiatry 158: 1367–1377

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308

    PubMed  CAS  Google Scholar 

  • Kaneko T, Fujiyama F, Hioki H (2002) Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain. J Comp Neurol 444: 39–62

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H (1989) [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 77: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Kunzle H (1975) Bilateral projections from precentral motor cortex to the putamen and other parts of the basal ganglia. An autoradiographic study in Macaca fascicularis. Brain Res 88: 195–209

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Kegeles LS, Abi-Dargham A (2003) Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci 1003: 138–158

    Article  PubMed  CAS  Google Scholar 

  • Leichnetz GR (1986) Afferent and efferent connections of the dorsolateral precentral gyms (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8. J Comp Neurol 254: 460–492

    Article  PubMed  CAS  Google Scholar 

  • McCullumsmith RE, Meador-Woodmff JH (2002) Striatal excitatory amino acid transporter transcript expression in schizophrenia, bipolar disorder, and major depressive disorder. Neuropsychopharmacology 26: 368–375

    Article  PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1995) Glutamate receptor dysfunction and schizo phrenia. Arch Gen Psychiatry 52: 998–1007

    PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic Press, London 474

    Google Scholar 

  • Reynolds GP, Abdul-Monim Z, Neill JC, Zhang ZJ (2004) Calcium binding protein markers of GABA deficits in schizophrenia — postmortem studies and animal models. Neurotox Res 6: 57–61

    Article  PubMed  Google Scholar 

  • Riederer P, Lange KW, Kornhuber J, Jellinger K (1991) Glutamate recep tor antagonism: neurotoxicity, anti-akinetic effects, and psychosis. J Neural Transm Suppl 34: 203–210

    PubMed  CAS  Google Scholar 

  • Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Wu D, Nash N, Kuncl RW (1994) Localization of neuronal and glial glutamate trans porters. Neuron 13: 713–725

    Article  PubMed  CAS  Google Scholar 

  • Schmitt A, Zink M, Petroianu G, May B, Braus DF, Henn FA (2003) Decreased gene expression of glial and neuronal glutamate transpor ters after chronic antipsychotic treatment in rat brain. Neurosci Lett 347: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Shigeri Y, Seal RP, Shimamoto K (2004) Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 45: 250–265

    Article  PubMed  CAS  Google Scholar 

  • Takada M, Tokuno H, Nambu A, Inase M (1998) Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res 120: 114–128

    Article  PubMed  CAS  Google Scholar 

  • Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113: 1353–1363

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Lahti AC, Medoff DR, Gao XM, Holcomb HH (2003) Evaluating glutamatergic transmission in schizophrenia. Ann N Y Acad Sci 1003: 113–118

    Article  PubMed  CAS  Google Scholar 

  • Torrey EF, Webster M, Knable M, Johnston N, Yolken RH (2000) The Stanley Foundation brain collection and neuropathology consortium. Schizophr Res 44: 151–155

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR, Egan MF, Bertolino A, Callicott JH, Mattay VS, Lipska BK, Berman KF, Goldberg TE (2001) Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 50: 825–844

    Article  PubMed  CAS  Google Scholar 

  • West AR, Floresco SB, Charara A, Rosenkranz JA, Grace AA (2003) Electrophysiological interactions between striatal glutamatergic and dopaminergic systems. Ann N Y Acad Sci 1003: 53–74

    Article  PubMed  CAS  Google Scholar 

  • Wiesendanger E, Clarke S, Kraftsik R, Tardif E (2004) Topography of cortico-striatal connections in man: anatomical evidence for parallel organization. Eur J Neurosci 20: 1915–1922

    Article  PubMed  CAS  Google Scholar 

  • Yeterian EH, Pandya DN (1991) Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. J Comp Neurol 312: 43–67

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZJ, Reynolds GP (2002) A selective decrease in the relative density of parvalbumin-immunoreactive neurons in the hippocampus in schi zophrenia. Schizophr Res 55: 1–10

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Nudmamud-Thanoi, S., Piyabhan, P., Harte, M., Cahir, M., Reynolds, G. (2007). Deficits of neuronal glutamatergic markers in the caudate nucleus in schizophrenia. In: Gerlach, M., Deckert, J., Double, K., Koutsilieri, E. (eds) Neuropsychiatric Disorders An Integrative Approach. Journal of Neural Transmission. Supplementa, vol 72. Springer, Vienna. https://doi.org/10.1007/978-3-211-73574-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-73574-9_34

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-73573-2

  • Online ISBN: 978-3-211-73574-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics