Skip to main content

Mechanisms of subcellular remodelling in post-infarct heart failure

  • Chapter
Myocardial Ischemia: Mechanisms, Reperfusion, Protection

Part of the book series: EXS ((EXS,volume 76))

Summary

Occlusion of a coronary artery results in myocardial ischemia and subsequent myocardial infarction. Whenever the infarct size is more than 30% of the ventricular wall, the remaining myocardium attempts to compensate for the loss of muscle mass by changing the size and shape of cardiocytes in addition to developing cardiac hypertrophy, cardiac dilatation and congestive heart failure. This remodelling of the heart is associated with changes in the extracellular matrix including collagen proteins and is most probably due to the activation of both sympathetic nervous system and renin-angiotensin system as well as increased formation of various growth factors. Alterations in contractile function of the infarcted heart are associated with remodelling of the sarcoplasmic reticulum with respect to Ca2+-pump and Ca2+-release channels as well as contractile and regulatory proteins of the myofibrils. Myocardial infarction has also been shown to result in remodelling of the sarcolemmal membrane with respect to Ca2+-channels, Ca2+-transport systems, cardiac receptors and signal transduction mechanisms. Although information regarding remodelling of mitochondria in the infarcted heart is limited, alterations in energy yielding and Ca2+-accumulating systems are suspected. Accordingly, it is suggested that changes in cardiac contractile dysfunction due to myocardial infarction are associated with remodelling of both extracellular matrix and subcellular organelles in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dhalla NS, Elimbam V, Rupp H, Takeda N, Nagano M. Role of calcium in cardiac cell damage and dysfunction. In: Sperelakis N, editor: Physiology and pathophysiology of the heart. 3rd ed. Boston: Kluwer Academic Publishers, 1995: 605 – 623.

    Google Scholar 

  2. Parmley WW. Pathophysiology of congestive heart failure. Am J Cardiol 1985; 55: 9A–14A.

    Google Scholar 

  3. Eriksson H. Heart failure: a growing public health problem. J Int Med 1995; 237: 135 – 141.

    Article  CAS  Google Scholar 

  4. Pfeffer MA, Braunwald E. Ventricular remodelling after myocardial infarction. Circulation 1990; 81: 1161 – 1172.

    Article  PubMed  CAS  Google Scholar 

  5. Gaudron P, Eilles C, Erti G, Kochsiek K. Early remodeling of the left ventricle in patients with myocardial infarction. Eur Heart J 1990; 11 (B): 139 – 149.

    PubMed  Google Scholar 

  6. Chareonthatawee P, Christian TF, Hirose K, Gibbons RJ, Rumberger JA. Relation of initial infarct size to extent of left ventricular remodelling in the year after acute myocardial infarction. Am J Cardiol 1995; 25: 567 – 573.

    Article  Google Scholar 

  7. Ginzton LE, Rodrigues D, Garner D, Laks MM. Functional significance of post-myocardial infarction left ventricular hypertrophy: A beneficial response. Am Heart J 1992; 123: 628 – 635.

    Article  PubMed  CAS  Google Scholar 

  8. Pfeffer JM, Fischer TA, Pfeffer MA. Angiotensin-Converting enzyme inhibition and ventricular remodeling after myocardial infarction. Ann Rev Physiol 1995; 57: 805 – 826.

    Article  CAS  Google Scholar 

  9. Jugdutt BI. Prevention of ventricular remodelling post myocardial infarction: Timing and duration of therapy. Can J Cardiol 1993; 9 (1): 103 – 114.

    CAS  Google Scholar 

  10. Braunwald E, Pfeffer MA. Ventricular enlargement and remodelling following acute myocardial infarction: Mechanisms and management. Am J Cardiol 1991; 68: 1D–6D.

    Google Scholar 

  11. Sharpe N. Early preventative treatment of left ventricular dysfunction following myocardial infarction: Optimal timing and patient selection. Am J Cardiol 1991; 68: 64D–69D.

    Google Scholar 

  12. Deedwania PC. Prevention of heart failure and postinfarction remodelling. Congestive Heart Failure 1994; 12: 155 – 164.

    CAS  Google Scholar 

  13. Vaughan DE, Pfeffer MA. Angiotensin converting enzyme inhibitors and cardiovascular remodelling. Cardiovasc Res 1994; 28: 159 – 165.

    Article  PubMed  CAS  Google Scholar 

  14. Ball SG, Hall AS, Murray GD. Angiotensin-Converting enzyme inhibitors after myocardial infarction: Indications and timing. J Am Coll Cardiol 1995; 25: 42S–46S.

    Google Scholar 

  15. Lejemtel TH, Hochman JS, Sonnenblick EH. Indications for immediate angiotensin-converting enzyme inhibition in patients with acute myocardial infarction. J Am Coll Cardiol 1995; 25: 47S–51S.

    Google Scholar 

  16. Dixon IMC, Afzal N, Takeda N, Nagano M, Dhalla NS. Remodeling of cardiac membranes during the development of congestive heart failure due to myocardial infarction. In: Dhalla NS, Beamish RE, Takeda N, Nagano M, editors: The Failing Heart. New York: Raven Press Ltd, 1995: 217 – 230.

    Google Scholar 

  17. Dhalla NS, Dixon IMC, Rupp H, Barwinsky J. Experimental congestive heart failure due to myocardial infarction: Sarcolemmal receptors and cation transporters. In: Gulch RW, Kissling G, editors: Current topics in heart failure. Darmstadt: Steinkopff Verlag, 1991: 13 – 23.

    Google Scholar 

  18. Holubarsch C, Hasenfuss G, Thierfelder L, Pieske B, Just H. The heart in heart failure: Ventricular and myocardial alterations. Eur Heart J 1991; 12 (C): 8 – 13.

    PubMed  Google Scholar 

  19. Dhalla NS, Afzal N, Rupp H, Takeda N, Nagano M. Restructuring of sarcoplasmic reticular membrane during the development of heart disease. In Bkaily G, editor: Membrane physiology. Boston: Kluwer Academic Publishers, 1994: 25 – 46.

    Chapter  Google Scholar 

  20. Dhalla NS, Heyliger C, Shah KR, Sethi R, Takeda N, Nagano M. Remodelling of membrane systems during the development of cardiac hypertrophy due to pressure overload. In: Nagano M, Takeda N, Dhalla NS, editors: The adapted heart. New York: Raven Press Ltd, 1994: 27 – 49.

    Google Scholar 

  21. McDonald KM, Rector T, Carlyle PF, Francis GS, Cohn JN. Angiotensin-Converting enzyme inhibition and beta-adrenoceptor blockade regress established ventricular remodelling in a canine model of discrete myocardial damage. J Am Coll Cardiol 1994; 24: 1762 – 1768.

    Article  PubMed  CAS  Google Scholar 

  22. Jugdutt BI. Effect of Captopril and enalapril on left ventricular geometry, function and collagen during healing after anterior and inferior myocardial infarction in a dog model. J Am Coll Cardiol 1995; 25: 1718 – 1725.

    Article  PubMed  CAS  Google Scholar 

  23. Johns TNP, Olson BJ. Experimental myocardial infarction. I. A method of coronary occlusion in small animals. Ann Surg 1954; 140: 675 – 682.

    Article  PubMed  CAS  Google Scholar 

  24. Selye H, Bajusz E, Grasso S, Mendell P. Simple techniques for the surgical occlusion of coronary vessels in the rat. Angiology 1960; 11: 398 – 407.

    Article  PubMed  CAS  Google Scholar 

  25. Pfeffer MA, Pfeffer JM, Fishbein MC, Fletcher PJ, Spadaro J, Kloner RA et al. Myocardial infarct size and ventricular function in rats. Circ Res 1979; 44: 503 – 512.

    PubMed  CAS  Google Scholar 

  26. Fletcher PJ, Pfeffer JM, Pfeffer MA, Braunwald E. Left-ventricular diastolic pressure-volume relations in rats with healed myocardial infarction: effects on systolic function. Circ Res 1981; 48: 618 – 626.

    Google Scholar 

  27. Anversa P, Olivetti G, Capasso JM. Cellular basis of ventricular remodelling after myocardial infarction. Am J Cardiol 1991; 68: 7D–16D.

    Google Scholar 

  28. Pfeffer JM. Progressive ventricular dilation in experimental myocardial infarction and its attenuation by angiotensin-converting enzyme inhibition. Am J Cardiol 1991; 68: 17D–25D.

    Google Scholar 

  29. Litwin SE, Raya TE, Warner A, Litwin CM, Goldman S. Effects of Captopril on contractility after myocardial infarction: Experimental observations. Am J Cardiol 1991; 68: 26D–24D.

    Google Scholar 

  30. Yang XP, Sabbah HN, Liu YE, Sharov VG, Mascha EJ, Alwan I, Carretero OA.

    Google Scholar 

  31. Ventriculographic evaluation of three rat models of cardiac dysfunction. Am J Physiol 1993; 265: H1946 – H1952.

    Google Scholar 

  32. Wollert KC, Studer R, von Bulow B, Drexler H. Survival after myocardial infarction in the rat. Role of tissue angiotensin-converting enzyme inhibition. Circulation 1994; 90: 2457 – 2467.

    PubMed  CAS  Google Scholar 

  33. Kajstura J, Zhang X, Reiss K, Szoke E, Li P, Lagrasta C, Cheng W, Darzynkiewicz Z, Olivetti G, Anversa P. Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing-induced cardiomyopathy in rats. Circ Res 1994; 74: 383 – 400.

    PubMed  CAS  Google Scholar 

  34. Johnston CI, Fabris B, Yoshida K. The cardiac renin-angiotensin in heart failure. Am Heart J 1993; 126: 756 – 760.

    Article  PubMed  CAS  Google Scholar 

  35. Rouleau JL, Moye LA, de Champlain J, Klein M, Bichet D, Packer M et al. Activation of neurohumoral systems following acute myocardial infarction. Am J Cardiol 1991; 68: 80D–86D.

    Google Scholar 

  36. Sumida H, Yasue H, Yoshimura M, Okumura K, Ogawa H, Kugiyama K et al. Comparison of secretion pattern between A-type and B-type natriuretic peptides in patients with old myocardial infarction. J Am Coll Cardiol 1995; 25: 1105 – 1110.

    Article  PubMed  CAS  Google Scholar 

  37. Yamagishi H, Kim S, Nishikimi T, Takeuchi K, Takeda T. Contribution of cardiac renin-angiotensin system to ventricular remodelling in myocardial-infarcted rats. J Mol Cell Cardiol 1993; 25: 1369 – 1380.

    Article  PubMed  CAS  Google Scholar 

  38. Pinto YM, van Gilst WH, Kingma H, Schunkert H. Deletion-type allele of the angiotensin-converting enzyme gene is associated with progressive ventricular dilation after anterior myocardial infarction. J Am Coll Cardiol 1995; 25: 1622 – 1626.

    Article  PubMed  CAS  Google Scholar 

  39. Walsh RA. Sympathetic control of diastolic function in congestive heart failure. Circulation 1990; 82 (1): 52 – 58.

    Google Scholar 

  40. Pfeffer JM, Pfeffer MA, Braunwald E. Influence of chronic Captopril therapy on the infarcted left ventricle of the rat. Circ Res 1985; 57: 84 – 95.

    PubMed  CAS  Google Scholar 

  41. Pfeffer JM, Pfeffer MA. Angiotensin converting enzyme inhibition and ventricular remodeling in heart failure. Am J Med 1988: 84 (3a): 37 – 44.

    Article  PubMed  CAS  Google Scholar 

  42. Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ Jr., Cuddy TE, Davis BR et al. Effect of Captopril on mortality and morbidity in patient with left ventricular dysfunction after myocardial infarctions. Results of the survival and ventricular enlargement trial. New Engl J Med 1992; 327: 669 – 677.

    Article  PubMed  CAS  Google Scholar 

  43. Volders PGA, Willems IEMG, Cleutjens JPM, Arends JW, Havenithy MG, Daemen MJAP. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Moll Cell Cardiol 1993; 1317 – 1323.

    Google Scholar 

  44. Sun Y, Cleutjens JPM, Diaz-Arias AA, Weber KT. Cardiac angiotensin converting enzyme and myocardial fibrosis in the rat. Cardiovasc Res 1994; 28: 1423 – 1432.

    Article  PubMed  CAS  Google Scholar 

  45. McCormic RJ, Müsch TI, Bergman BC, Thomas DP. Regional differences in LV collagen accumulation and mature cross-linking after myocardial infarction in rats. Am J Physiol 1994; 266: H35 – H359.

    Google Scholar 

  46. Jugdutt BI, Khan MI, Jugdutt SJ, Blinston GE. Combined Captopril and isosorbide dinitrate during healing after myocardial infarction. Effect on ventricular remodelling, function, mass and collagen. J Am Coll Cardiol 1995; 25: 1089 – 1096.

    Article  PubMed  CAS  Google Scholar 

  47. Pelouch V, Dixon IMC, Sethi R, Dhalla NS. Alteration of collagenous protein profile in congestive heart failure secondary to myocardial infarction. Mol Cell Biochem 1994; 129: 121 – 131.

    Article  Google Scholar 

  48. Weber KT, Brilla CG. Factors associated with reactive and reparative fibrosis of the myocardium. Basic Res Cardiol 1992; 87 (1): 291 – 301.

    PubMed  Google Scholar 

  49. Langer GA. Calcium at the sarcolemma. J Mol Cell Cardiol 1984; 16: 147 – 153.

    Article  PubMed  CAS  Google Scholar 

  50. Dhalla NS, Ziegelhoffer A, Harrow JAC. Regulatory role of membrane systems in heart function. Can J Physiol Pharmacol 1977; 55: 1211 – 1234.

    Article  PubMed  CAS  Google Scholar 

  51. Dhalla NS, Das PK, Sharma GP. Subcellular basis of cardiac contractile failure. J Mol Cell Cardiol 1978; 10: 363 – 385.

    Article  PubMed  CAS  Google Scholar 

  52. Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE. Calcium movements in relation to heart function. Basic Res Cardiol 1982; 77: 117 – 139.

    Article  PubMed  CAS  Google Scholar 

  53. Dixon IMC, Lee S, Dhalla NS. Nitrendipine binding in congestive heart failure due to myocardial infarction. Circ Res 1990; 66: 782 – 788.

    PubMed  CAS  Google Scholar 

  54. Fellenius E, Hansen CA, Mjos O, Neely JR. Chronic infarction decreases maximum cardiac work and sensitivity of the heart to extracellular calcium. Am J Physiol 1985; 249: H80 – H87.

    Google Scholar 

  55. Dixon IMC, Hata T, Dhalla NS. Sarcolemmal Na+-K+ ATPase activity in congestive heart failure due to myocardial infarction. Am J Physiol 1992; 262: C664 – C671.

    PubMed  CAS  Google Scholar 

  56. Dixon IMC, Hata T, Dhalla NS. Sarcolemmal Ca2+-transport in congestive heart failure due to myocardial infarction. Am J Physiol 1992; 262: H1387 – H1394.

    PubMed  CAS  Google Scholar 

  57. Inui M, Saito A, Fleischer S. Differential effect of global ischemia on the ryanodine sensitive and ryanodine insensitive calcium uptake of cardiac sarcoplasmic reticulum. J Biol Chem 1987; 262: 15637 – 15642.

    PubMed  CAS  Google Scholar 

  58. Feher JJ, Lebolt WR, Manson NH. Isolation of the ryanodine receptor from cardiac sarcoplasmic reticulum and identity with the feet structures. Circ Res 1989; 65: 1400 – 1408.

    PubMed  CAS  Google Scholar 

  59. Afzal N, Dhalla NS. Differential changes in left and right ventricular SR calcium transport in congestive heart failure. Am J Physiol 1992; 262: H864 – H874.

    Google Scholar 

  60. Afzal N, Zarain-Herzberg A, Dhalla NS. Cardiac SR Ca2+-ATPase gene expression in post-ischemic congestive heart failure. J Mol Cell Cardiol 1992; 24(III): S.33.

    Google Scholar 

  61. Mercardier JJ, Lompré AM, Due P, Boheler KR, Fraysse JB, Wisnewski C et al. Altered sarcoplasmic reticulum calcium-ATPase gene expression in the human ventricle during end-stage heart failure. J Clin Invest 1990; 85: 305 – 309.

    Article  Google Scholar 

  62. Cheung JY, Müsch TI, Misawa H, Semanchick A, Elensky M, Yelamarty RV, Moore RL. Impaired cardiac function in rats with healed myocardial infarction: Cellular vs myocardial mechanisms. Am J Physiol 1994; 266: C29 – C36.

    PubMed  CAS  Google Scholar 

  63. Mercardier JJ, Lompré AM, Wisnewsky C, Samuel JL, Bercovici J, Swynghedauw B et al. Myosin isoenzymic changes in several models of rat cardiac hypertrophy. Circ Res 1981; 49: 525 – 532.

    Google Scholar 

  64. Geenen DL, While TP, Lampman RM. Papillary mechanics and cardiac morphology of infarcted rat hearts after training. J Appi Physiol 1987; 63: 92 – 96.

    CAS  Google Scholar 

  65. Geenen DL, Malhotra A, Scheuer J. Regional variation in rat cardiac myosin isoenzymes and ATPase activity after infarction. Am J Physiol 1989; 256: H745 – H750.

    PubMed  CAS  Google Scholar 

  66. Alousi AA, Grant AM, Etzler JR, Cofer BR, Van der Berl-Kahn J, Meivin D. Reduced cardiac myofibrillar Mg-ATPase activity without changes in myosin isoenzymes in patients with end-stage heart failure. Mol Cell Biochem 1990; 96: 79 – 88.

    Article  PubMed  CAS  Google Scholar 

  67. Liu X, Shao Q, Dhalla NS. Myosin light chain phosphorylation in cardiac hypertrophy and failure due to myocardial infarction. J Moll Cell Cardiol 1995; 27: 2613 – 2621.

    Article  CAS  Google Scholar 

  68. Ingwall JS. Is cardiac failure a consequence of decreased energy reserve? Circulation 1993; 87(VII): VII 58–62.

    Google Scholar 

  69. Scheuer J. Metabolic factors in myocardial failure. Circulation 1993; 87(VII): VII 54–57.

    Google Scholar 

  70. Apstein SC, Gravino FN, Haudenschild CC. Determinants of a protective effect of glucose and insulin on the ischemic myocardium: Effects on contractile function diastolic compliance, metabolism and ultrastructure during ischemia and reperfusion. Circ Res 1983; 52: 515 – 526.

    PubMed  CAS  Google Scholar 

  71. Neubauer S, Horn M, Naumann A, Tian R, Kau H, Laser M et al. Impairment of energy metabolism in intact residual myocardium of rat hearts with chronic myocardial infarction. J Clin Invest 1995; 95: 1092 – 1100.

    Article  PubMed  CAS  Google Scholar 

  72. Dixon IMC, Dhalla NS. Alterations in cardiac adrenoceptors in congestive heart failure secondary to myocardial infarction. Coronary Artery Disease 1991; 2: 805 – 814.

    Google Scholar 

  73. Boehm M, Benckelmann D, Brown L, Feiler G, Lorenz B, Näbauer M et al. Reduction of beta-adrenoceptor density and evaluation of positive inotropic responses in isolated diseased human myocardium. Eur Heart J 1988; 9: 844 – 852.

    CAS  Google Scholar 

  74. Yamamoto J, Ohyanagi M, Morita M, Iwasaki T. ß-adrenoceptor-G-protein-adenylate cyclase complex in rat hearts with ischemic heart failure produced by coronary artery ligation. J Mol Cell Cardiol 1994; 26: 617 – 626.

    Article  PubMed  CAS  Google Scholar 

  75. Sethi R, Dhalla KS, Beamish RE, Dhalla NS. Alterations of –-adrenoreeeptor mechanisms during the development of heart failure. Can J Cardiol 1994; 10(A): 58A.

    Google Scholar 

  76. Bocckino SB, Wilson PB, Exton JH. Phosphatidate-dependent protein phosphorylation. Proc Natl Acad Sci USA 1991; 88: 6210 – 6213.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Dhalla, N.S., Kaura, D., Liu, X., Beamish, R.E. (1996). Mechanisms of subcellular remodelling in post-infarct heart failure. In: Karmazyn, M. (eds) Myocardial Ischemia: Mechanisms, Reperfusion, Protection. EXS, vol 76. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-8988-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8988-9_28

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9857-7

  • Online ISBN: 978-3-0348-8988-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics