Skip to main content

“Oxidative stress” in fish by environmental pollutants

  • Chapter

Part of the book series: EXS ((EXS,volume 86))

Summary

Evolution of aerobic life on earth faced the problem of having to minimize the constant threat of damage through reactive oxygen species. As a response, mechanisms for safe handling of oxygen and its metabolites have evolved. There is a constant production of reactive oxygen species in all living cells in which roughly up to 1% of the total oxygen consumption of an animal may be attributed to reactive oxygen species generation and detoxification. Mitochondrial electron transport chain is a major source for reactive oxygen species. Interferences with this pathway even increase the cells’ reactive oxygen species burden, inducing oxidative stress. Metabolism of xenobiotic pollutants may result in the additional formation of reactive oxygen species. During oxidation of xenobiotics ambient oxygen is activated which may be released from the enzymes, damaging cellular structures and functions. Furthermore, reduced moieties of pollutants or their metabolites react with oxygen, producing superoxide (redox cycling). Reactive oxygen species thus represent a common side product of xenobiotic metabolism and many pollutants actually exert part of their toxicity through the formation of reactive oxygen species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aceto, A., Amicarelli, E, Saccheta, P., Dragani, B., Bucciarelli, T., Masciocco, L., Miranda, M. and Di Ilio, C. (1994) Developmental aspects of detoxifying enzymes in fish (Salmo irideus). Free Radic. Res. 21:285–294.

    Article  PubMed  CAS  Google Scholar 

  • Aksnes, A. and Njaa, L.R. (1981) Catalase, glutathione peroxidase and superoxide dismutase in different fish species. Comp. Biochem. Physiol. 69B:893–896.

    CAS  Google Scholar 

  • Andersson, T., Förlin, L., Hardig, J. and Larsson A. (1988) Physiological disturbances in fish living in costal water polluted with bleached kraft pulp mill effluents. Can. J. Fish. Aquat. Sci. 45:1525–1536.

    Article  CAS  Google Scholar 

  • Arrillo, A. and Melodia, E (1991) Nitrite oxidation in Eisenia foetida (Savigny): Ecological implications. Funct. Ecol. 5: 629–634.

    Article  Google Scholar 

  • Bachowski, G.J., Thomas, J.P. and Girotti, A.W. (1988) Ascorbate-enhanced lipid peroxidation in photooxidized cell membranes: Cholesterol product analysis as a probe of reaction mechanism. Lipids 23:580–586.

    Article  PubMed  CAS  Google Scholar 

  • Bainy, A.C.D., Saito, E., Carvalho, P.S.M. and Junqueira, V.B.C. (1996) Oxidative stress in gill, erythrocytes, liver and kidney of Nile tilapia (Oreochromis niloticus) from a polluted site. Aquat. Toxicol. 34: 151–162.

    Article  CAS  Google Scholar 

  • Bagnasco, M., Camoirano, A., De Flora, S., Melodia, E and Arillo, A. (1991) Enhanced liver metabolism of mutagens and carcinogens in fish living in polluted seawater. Mutat. Res. 262:129–137.

    Article  PubMed  CAS  Google Scholar 

  • Barja, G. (1993) Commentary: Oxygen radicals, a failure or a success of evolution? Free Rad. Res. Comms. 18:63–70.

    Article  CAS  Google Scholar 

  • Bell, J.G., Adron, J.W. and Cowey, C.B. (1986) Effect of selenium deficiency on hydroperoxidestimulated release of glutathione from isolated perfused liver of rainbow trout (Salmo gairdneri). Br: J. Nutr. 56:421–428.

    Article  CAS  Google Scholar 

  • Blum, J. and Fridovich, I. (1985) Inactivation of glutathione peroxidase by superoxide radical. Arch. Biochem. Biophys. 240:500–508.

    Article  PubMed  CAS  Google Scholar 

  • Boveris, A. and Cadenas, E. (1982) Production of superoxide radicals and hydrogen peroxide in mitochondria. In: Oberley, L.W. (Ed) Superoxide Dismutase. Vol. 2. CRC Press, Boca Raton, pp 15–30.

    Google Scholar 

  • Bray, R.C., Cockle, S.A., Fielden, E.M., Roberts, P.B., Rotilio, G. and Calabrese!, L. (1974) Reduction and inactivation of superoxide dismutase by hydrogen peroxide. Biochem. J. 139:43–48.

    PubMed  CAS  Google Scholar 

  • Bucher, F., Hofer, R., Krumschnabel, G. and Doblander, C. (1993) Disturbances in the pro-oxidant — antioxidant balance in the liver of bullhead (Cottus gobio L.) exposed to treated paper mill effluents. Chemosphere 27:1329–1338.

    Article  CAS  Google Scholar 

  • Byron, E.R. (1982) The adaptive significance of calanoid copepod pigmentation: A comparative and experimental analysis. Ecology 63:1871–1886.

    Article  Google Scholar 

  • Caprari, P., Bozzi, A., Malorni, W, Bottini, A., Iosi, E, Santini, M.T. and Salvati, A.M. (1995) Junctional sites of erythrocyte skeletal proteins are specific targets of tert-butylhydroperoxide oxidative damage. Chem.-Biol. Inter. 94:243–258.

    Article  CAS  Google Scholar 

  • Chatterjee, S. and Bhattacharya, S. (1984) Detoxication of industrial pollutants by the glutathione-S-transferase system in the liver of Anabas testudineus (Bloch). Tox. Lett. 22: 187–198.

    Article  CAS  Google Scholar 

  • Cheng, K.C., Cahill, D.S., Kasai, H., Nishimura, S. and Loch, L. (1992) 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G T and A C substitutions. J. Biol. Chem. 267:166–172.

    PubMed  CAS  Google Scholar 

  • Dabrowski, K. (1990) Gastro-intestinal circulation of ascorbic acid. Comp. Biochem. Physiol. 95A:481–486.

    Article  CAS  Google Scholar 

  • Dabrowski, K. (1992) Ascorbate concentration in fish ontogeny. J. Fish Biol. 40:273–279.

    Article  CAS  Google Scholar 

  • Dabrowski, K., Lackner, R. and Doblander, C. (1990) Effect of dietary ascorbate on the concentration of tissue ascorbic acid, dehydroascorbic acid, ascorbic sulfate, and activity of ascorbic acid sulfate sulfohydrolase in rainbow trout (Oncorhynchus mykiss).Can. J. Fish. Aquat. Sci. 47:1518–1525.

    Article  CAS  Google Scholar 

  • DiGiulio, R.T., Washburn, P.C., Wenning, R.J., Winston, G.W. and Jewell, C.S. (1989) Biochemical responses in aquatic animals: A review of determinants of oxidative stress. Environ. Toxicol. Chem. 8: 1103–1123.

    Article  Google Scholar 

  • DiGiulio, R.T., Habig, C. and Gallagher, E.P. (1993) Effects of Black Rock Harbour sediments on indices of biotransformation, oxidative stress, and DNA integrity in channel catfish. Aquat. Toxicol. 26: 1–22.

    Article  Google Scholar 

  • Droy, B.F., Davis, M.E. and Hinton, D.E. (1989) Mechanism of allyl formate-induced hepatotoxicity in rainbow trout. Toxicol. Appl. Pharmacol. 98:313–324.

    Article  PubMed  CAS  Google Scholar 

  • Esterbauer, H., Cheeseman, K.H., Dianzani, M.U., Poli, G. and Slater, T.F. (1982) Separation and characterisation of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes. Biochem. J. 208: 129–140.

    PubMed  CAS  Google Scholar 

  • Falcioni, G., Cincola, G. and Brunori, M. (1987) Glutathione peroxidase and oxidative hemolysis in trout red blood cells. FEBS Lett. 221:355–358.

    Article  PubMed  CAS  Google Scholar 

  • Filho, D.W. (1996) Fish antioxidant defences-A comparative approach. Braz. J. Med. Biol. Res. 29:1735–1742.

    Google Scholar 

  • Frei, B., England, L. and Ames, B.N. (1989) Ascorbate is an outstanding antioxidant in human blood plasma. Proc. Natl. Acad. Sci. 86:6377–6381.

    Article  PubMed  CAS  Google Scholar 

  • Frigg, M., Prabuchi, A.L. and Ruhdel, E.U. (1990) Effect of dietary vitamin E levels on oxidative stability of trout fillets. Aquaculture 84:145–158.

    Article  CAS  Google Scholar 

  • Fujimoto, K., Neff, W.E. and Frakel, E.N. (1984) The reaction of DNA with lipid oxidation products, metals and reducing agents. Biochim. Biophys. Acta 795: 100–107.

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga, K., Suzuki, T., Hara, A. and Takama, K. (1992) Effect of ozone on the activities of reactive oxygen scavenging enzymes in RBC of ozone exposed Japanese charr (Salvelinus leucomaenis).Free Radie. Res. Com. 17: 327–333.

    Article  CAS  Google Scholar 

  • Gallagher, E.P., Hasspieler, B.M. and DiGiulio, R.T. (1992) Effects of buthionine sulfoximine and diethyl maleate on glutathione turnover in the channel catfish. Biochem. Pharmacol. 43:2209–2215.

    Article  PubMed  CAS  Google Scholar 

  • Grelloni, E, Gabbianelli, R. and Falcioni, G. (1991) Inactivation of glutathione peroxidase following hemoglobin oxidation. Biochem. Int. 25: 789–795.

    PubMed  CAS  Google Scholar 

  • Guillou, A., Choubert, G. and Noüe, B. (1992) Absorption and blood clearance of labeled carotenoids ([14C] astaxanthin, [3H] canthaxanthin and [3H] zeaxanthin) in mature female rainbow trout (Oncorhynchus mykiss). Comp. Biochem. Physiol. 103A:301–306.

    Article  CAS  Google Scholar 

  • Halver, J.E., Ashley, L.M. and Smith, R.E. (1969) Ascorbic acid requirements of coho salmon and rainbow trout. Trans. Amer. Fish. Soc. 98:762–771.

    Article  CAS  Google Scholar 

  • Härdig, J. and Höglund L.B. (1983) Seasonal and ontogenetic effects on methemoglobin and reduced glutathione contents in the blood of reared Baltic salmon. Comp. Biochem. Physiol. 75A:27–34.

    Article  Google Scholar 

  • Härdig, J., Andersson, T., Bengtsson, B.E., Forlin, L. and Larsson, A. (1988) Long-term effects of bleached kraft mill effluents on red and white blood cell status, ion balance, and vertebral structure in fish. Ecotoxicol Environ. Safety 15:96–106.

    Article  PubMed  Google Scholar 

  • Hasspieler, B.M., Behar, J.V. and DiGiulio R.T. (1994) Glutathione-dependent defense in channel catfish (Ictalurus punctatus) and brown bullhead (Ameiurus nebulosus). Ecotoxicol. Environ. Saf. 28:82–90.

    Article  PubMed  CAS  Google Scholar 

  • Hilton, J.W. (1989) The interaction of vitamins, minerals and diet composition in the diet of fish. Aquaculture 79:223–214.

    Article  CAS  Google Scholar 

  • Imlay, J A and Linn, S. (1988) DNA damage and oxygen radical toxicity. Science 240:1302–1309.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D.P. (1985) The role of oxygen concentration in oxidative stress: hypoxic and hyperoxic models. In: Sies, H. (Ed) Oxidative stress. Academic Press, London, Orlando, pp 151–195.

    Google Scholar 

  • Kappus, H. (1987) Oxidative stress in chemical toxicity. Arch. Toxicol. 60:144–149.

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi, M., Kakizono, T. and Nagai, S. (1993) Enhanced carotenoid biosynthesis by oxida- tive stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environm. Microbiol. 59:867–873.

    CAS  Google Scholar 

  • Kuchino, Y., Mori, F., Kasai, H., Inoue, H., Iwai, S., Miura, K., Ohtsuka, E. and Nishimura, S. (1987) Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the modified base and adjacent residues. Nature 327:77–79.

    Article  PubMed  CAS  Google Scholar 

  • Lehtinen, K.J., Kierkegaard, A., Jakobson, E. and Wändell, A. (1990) Physiological effects in fish exposed to effluents from mills with six different bleaching processes. Ecotox. Environ. Safety 19:33–46.

    Article  CAS  Google Scholar 

  • Lemaire, P. and Livingstone, D.R. (1994) Inhibition studies on the involvement of flavoprotein reductases in menadione-and nitrofurantoin-stimulated oxyradical production by hepatic microsomes of flounder (Platichthys flesus). J. Biochem. Toxicol. 9:87–95.

    Article  PubMed  CAS  Google Scholar 

  • Lemaire, P. and Livingstone, D.R. (1997) Aromatic hydrocarbon quinone-mediated reactive oxygen species production in hepatic microsomes of the flounder (Platichthys flesus L.). Comp. Biochem. Physiol. 117C:131–139.

    CAS  Google Scholar 

  • Lemaire, P., Matthews, A., Förlin, L. and Livingstone, D.R. (1997) Stimulation of oxyradical production of hepatic microsomes of flounder (Platichthys flesus) and perch (Perca fluviatilis) by model and pollutant xenobiotics. Arch Environ. Contam. Toxicol. 26: (1994) 191–201.

    Google Scholar 

  • Livingstone, D.R., Garcia Martinez, P., Michel, X., Narbonne, J.F., O’Hara, S., Ribera, D. and Winston, G.W. (1990) Oxyradical production as a pollution-mediated mechanism of toxicity in the common mussel, Mvtilus edulis L., and other molluscs. Functional Ecology 4: 415–424.

    Article  Google Scholar 

  • Lopez-Torres, M., Perez-Campo, R., Cadenas, S., Rojas, C. and Barja, G. (1993) A comparative study of free radicals in vertebrates — II. Non-enzymatic antioxidants and oxidative stress. Comp. Biochem. Physiol. 105B:757–763.

    CAS  Google Scholar 

  • McCord, J.M. and Fridovich, I. (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055.

    PubMed  CAS  Google Scholar 

  • Mather-Mihaich, E. and DiGiulio, R.T. (1986) Antioxidant enzyme activities and malondialdehyde, glutathione and methemoglobin concentrations in channel catfish exposed to DEF and n-butyl mercaptan. Comp. Biochem. Physiol. 85C:427–432.

    CAS  Google Scholar 

  • Mather-Mihaich, E. and DiGiulio, R.T. (1991) Oxidant, mixed-function oxidase and peroxisomal responses in channel catfish exposed to a bleached kraft mill effluent. Arch. Environ. Contain. Toxicol. 20:391–397.

    Article  CAS  Google Scholar 

  • Matkovics, B., Szabo, L., Varga, S.I., Barabas, K., Berencsi, G. and Nemcsok, J. (1984) Effects of a herbicide on the peroxide metabolism enzymes and lipid peroxidation in carp fish (Hypophthalmichthys nzolitrix). Acta Biol. Hung. 35:91–96.

    PubMed  CAS  Google Scholar 

  • Matkovics, B., Witas, H., Gabrielak, T. and Szabo, L. (1987) Paraquat as an agent affecting anti- oxidant enzymes of common carp erythrocytes. Comp. Biochern. Physiol. 87C:217–219.

    CAS  Google Scholar 

  • Nishimoto, M. Roubal, W.T., Stein, J.E. and Varanasi, U. (1991) Oxidative DNA damage in tissues of English Sole (Parophrys vetulus) exposed to nitrofurantoin. Chem. Biol. Interact. 80:317–326.

    Article  PubMed  CAS  Google Scholar 

  • Oikari, A., Holmbom, B., Anas, E., Miilunpalo, M., Kruzynski, G. and Castren, M. (1985) Eco-toxicological aspects of pulp and paper mill effluents discharged to an inland water system: Distribution in water and toxicant residues and physiological effects in caged fish (Salmo gairdneri). Aquat. Toxicol. 6:219–239.

    Article  CAS  Google Scholar 

  • Ortiz de Montellano, P.R. (1986) Oxygen activation and transfer. In: Ortiz de Montellanao, P.R. (Ed) Cytochrome P-450. Structure,mechanism and biochemistry. Plenum Press, New York, pp 217–271.

    Google Scholar 

  • Otto, D.M. and Moon, T.W. (1995) 3,3’,4,4’-Tetrachlorobiphenyl effects on antioxidant enzymes and glutathione status in different tissues of rainbow trout. Pharmacol. Toxicol. 77:281–287.

    Article  PubMed  CAS  Google Scholar 

  • Pedrajas, J.R., Peinado, J. and Lopez-Barea, J. (1993) Purification of Cu, Zn-superoxide dismutase isoenzymes from fish liver: Appearance of new isoforms as a consequence of pollution. Free Rad. Res. Com. 19:29–41.

    Article  CAS  Google Scholar 

  • Perez-Campo, R., Lopez-Torres, M., Rojas, C., Cadenas, S. and Barja, G. (1993) A comparative study of free radicals in vertebrates — I. Antioxidant enzymes. Comp. Biochem. Physiol. 105B:749–755.

    CAS  Google Scholar 

  • Petrivalsky, M., Machala, M., Nezveda, K., Piacka, V, Svobodova, Z. and Drabek, P. (1997) Glutathione-dependent detoxifying enzymes in rainbow trout liver: search for specific biochemical markers of chemical stress. Environ. Toxicol. Chem. 16:1417–1421.

    Google Scholar 

  • Premereur, N., van den Branden, C. and Roels, E (1986) Cytochrome P-450-dependent H2O2 production demonstrated in vivo. Influence of phenobarbital and allylisoprpylacetamide. FEBS Lett. 199:19–22.

    Article  PubMed  CAS  Google Scholar 

  • Radi, A.A.R. and Matkovics, B. (1988) Effects of metal ions on the antioxidant enzyme activities, protein content and lipid peroxidation of carp tissues.Comp. Biochern. Physiol. 90C: 69–72.

    CAS  Google Scholar 

  • Radi, A.A.R., Hai, D.Q., Matkovics, B. and Gabrielak, T. (1985) Comparative antioxidant enzyme study in freshwater fish with different types of feeding behaviour. Comp. Biochem. Physiol. 81C:395–399.

    CAS  Google Scholar 

  • Radi, A.A.R., Matkovics, B. and Csengeri, I. (1988) Effects of various oxygen concentrations on antioxidant enzymes and the quantity of tissue phospholipid fatty acids in the carp. Acta. Biol. Hung. 39:109–119.

    PubMed  CAS  Google Scholar 

  • Roberts, M.H., Jr., Sved, D.W. and Felston, S.P. (1987) Temporal changes in AHH and SOD activities in feral spot from the Elizabeth River, a polluted subestuary. Mar Environ. Res. 23:89–101.

    Article  CAS  Google Scholar 

  • Rodriguez-Ariza, A., Dorado, G., Peinado, J., Pueyo, C. and Lopez-Barea, J. (1991) Biochemical effects of environmental pollution in fishes from Spanish south-Atlantic littoral. Biochem. Soc. Trans. 19:301S.

    Google Scholar 

  • Rodriguez-Ariza, A., Abril, N., Navas, J.I., Dorado, G., Lopez-Barea, J. and Pueyo, C. (1992) Metal, mutagenicity, and biochemical studies on bivalve molluscs from Spanish coasts. Environm. Molec. Mutagen. 19: 112–124.

    Article  CAS  Google Scholar 

  • Rodriguez-Ariza, A., Peinado, J., Pueyo, C. and Lopez-Barea, J. (1993) Biochemical indicators of oxidative stress in fish from polluted littoral areas. Can. J Fish. Aquat. Sci. 50:2568–2573.

    Article  CAS  Google Scholar 

  • Schiedt, K., Levenberger, F.J., Vecchi, M. and Glinz, E. (1985) Absorbance retention and metabolic transformation of carotenoids in rainbow trout, salmon, and chicken. Pure and Appl. Chem. 57: 685 —692.

    Article  Google Scholar 

  • Shugart, L.R. (1988) Quantitation of chemically induced damage to DNA of aquatic organisms by alkaline unwinding assay. Aquatic Toxicol. 13:43–52.

    Article  CAS  Google Scholar 

  • Sies, H. (1985) Oxidative stress: Introductory Remarks. In: Sies, H. (Ed) Oxidative stress. Academic Press, London, Orlando, pp 1–8.

    Google Scholar 

  • Sindermann, C.J. (1979) Pollution-associated diseases and abnormalities of fish and shellfish: A review. Fishery Bull. 76:717–749.

    Google Scholar 

  • Stern, A. (1985) Red cell oxidative damage. In: Sies, H. (Ed) Oxidative stress. Academic Press, London, Orlando, pp 331–349.

    Google Scholar 

  • Tappel, M.E., Chaudiere, J. and Tappel A.L. (1982) Glutathione peroxidase activities of animal tissues. Comp. Biochem. Physiol. 73B:945–949.

    CAS  Google Scholar 

  • Thomas, R. (1987) Influence of some environmental variables on the ascorbic acid status of striped mullet, Mugil cephalus Linn., tissues. III. Effects of exposure to oil. J. Fish Biol. 30:485–494.

    Article  CAS  Google Scholar 

  • Thomas, P., Bally, M. and Neff, J.M. (1982) Ascorbic acid status of mullet, Mugil cephalus Linn., exposed to cadmium. J Fish Biol. 20: 183–196.

    Article  CAS  Google Scholar 

  • Thomas, R, Bally, M.B. and Neff, J.M. (1985) Influence of some environmental variables on the ascorbic acid status of mullet, Mugil cephalus L., tissues. II. Seasonal fluctuations and biosynthetic ability. J Fish Biol. 27:47–57.

    Article  CAS  Google Scholar 

  • Tucker, B.W. and Halver, J.E. (1986) Vitamin C metabolism in trout. Comp. Pathol. Bull. 18:1–6.

    Google Scholar 

  • Vig, E. and Nemcsok, J. (1989) The effects of hypoxia and paraquat on the superoxide dismutase activity in different organs of carp, Cyprinus carpio L. J. Fish Biol. 35:23–25.

    Article  CAS  Google Scholar 

  • Walker, C.H. and Livingstone D.R. (1992) Persistent pollutants in marine ecosystems. SETAC Special Publication. Pergamon Press, Oxford.

    Google Scholar 

  • Washburn, P.C., DiGiulio, R.T. (1989) Stimulation of superoxide production by nitrofurantoin, p-nitrobenzoic acid and m-dinitrobenzoic acid in hepatic microsomes of three species freshwater fish. Environ. Toxicol. Chem. 8: 171–180.

    CAS  Google Scholar 

  • Wedemeyer, G. (1969) Stress-induced ascorbic acid depletion and cortisol production in two salmonid fishes. Comp. Biochem Physiol. 29:1247–1251.

    Article  CAS  Google Scholar 

  • Wolf, G. (1994) Structure and function of an a-tocopherol binding protein. Nutr. Rev. 52:97–98.

    Article  PubMed  CAS  Google Scholar 

  • Zannoni, V. G. and Sato, P.H. (1975) Effects of ascorbic acid on microsomal drug metabolism. Ann. N.Y. Acad. Sci. 258: 119–131.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Basel AG

About this chapter

Cite this chapter

Lackner, R. (1998). “Oxidative stress” in fish by environmental pollutants. In: Braunbeck, T., Hinton, D.E., Streit, B. (eds) Fish Ecotoxicology. EXS, vol 86. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8853-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8853-0_6

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9802-7

  • Online ISBN: 978-3-0348-8853-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics