Skip to main content

Applications of DNA fingerprinting in plant population studies

  • Chapter
DNA Fingerprinting: State of the Science

Part of the book series: Progress in Systems and Control Theory ((EXS))

Summary

Many plant species are characterized by a large variability in breeding system and the frequent occurrence of one or several means of vegetative propagation, resulting in complicated population structures. Multi-locus DNA fingerprinting with probes specific for minisatellite and simple repetitive sequences has proven to be a very sensitive method for detecting genetic variation. Thus clones consisting of genetically identical plants can be distinguished and their spatial distribution analyzed. Similarly, offspring resulting from apomictic processes (asexual seed set) can be told apart from those resulting from sexual recombination. Genetic relatedness between different individuals can be estimated, albeit crudely, from band-sharing values obtained by pairwise comparison of different DNA fragment profiles. These estimates appear to be associated with breeding system, with selfing species and/or populations showing considerably less intrapopulational variation than their outcrossing counterparts. In species or species groups with relatively low levels of genetic variation due to e.g. apomixis, DNA fingerprinting may prove valuable even in taxonomy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beyermann B, Nürnberg P, Weihe A, Meixner M, Epplen JT, Börner T (1992) Fingerprinting plant genomes with oligonucleotide probes specific for simple repetitive DNA sequences. Theor Appl Genet 83: 691–694

    Google Scholar 

  • Bierwerth S, Kahl G, Weigand F, Weising K (1992) Oligonucleotide fingerprinting of plant and fungal genomes: a comparison of radioactive, colorigenic and chemiluminescent detection methods. Electrophoresis 13: 115–120

    Article  Google Scholar 

  • Bruford MW, Hanotte O, Brookfield JFY, Burke T (1992) Single-locus and multilocus DNA fingerprinting. In: Hoelzel AR (ed) Molecular genetic analysis of populations. A practical approach, pp 225–269. IRL Press, Oxford

    Google Scholar 

  • Dallas JF (1988) Detection of DNA “fingerprints ”of cultivated rice by hybridization with a human minisatellite probe. Proc Natl Acad Sci USA 85: 6831–6835

    Article  Google Scholar 

  • Gustafsson Å (1943) The genesis of the European blackberry flora. Lunds Univ Årsskrift 39(6): 1–200

    Google Scholar 

  • Hoepfner A-S, Nybom H, Carlsson U, Franzén R (1993) DNA fingerprinting useful for monitoring cell line identity in micropropagated raspberries. Acta Agricult Scand, Sect B 43: 53–57

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Individual-specific ‘fingerprints’ of human DNA. Nature 316: 76–79

    Article  Google Scholar 

  • Kaemmer D, Afza R, Weising K, Kahl G, Novak FJ (1992) Oligonucleotide and amplification fingerprinting of wild species and cultivars of banana (Musa spp.). Bio/Technology 10: 1030–1035

    Article  Google Scholar 

  • Kvarnheden A, Engström P (1992) Genetically stable, individual-specific differences in hypervariable DNA in Norway spruce, detected by hybridization to a phage M13 probe. Can J Forest Res 22: 117–123

    Article  Google Scholar 

  • Lavi U, Hillel J, Vainstein A, Lahav E, Sharon D (1991) Application of DNA fingerprints for identification and genetic analysis of avocado. J Amer Soc Hort Sci 116: 1078–1081

    Google Scholar 

  • Lynch M (1990) The similarity index and DNA fingerprinting. Mol Biol Evol 7: 478–484

    Google Scholar 

  • Lönn M, Tegelström H, Prentice HC (1992) The synthetic (TG)n polydinucleotide: a probe for gene flow and paternity studies in wild plant populations? Nucleic Acids Res 20: 1153

    Article  Google Scholar 

  • Meyer W, Morawetz R, Börner T, Kubicek CP (1992) The use of DNA fingerprint analysis in classification of some species of the Trichoderma aggregate. Curr Genet 21: 27–30

    Article  Google Scholar 

  • Nybom H (1987a) A demographic study of the apomictic blackberry, Rubus nessensis (Rosaceae). Nord J Bot 7: 365–372

    Article  Google Scholar 

  • Nybom H (1987b) Flowering and fruiting phenology in the apomictic blackberry, Rubus nessensis (Rosaceae). Nord J Bot 7: 373–381

    Article  Google Scholar 

  • Nybom H (1988) Apomixis versus sexuality in blackberries (Rubus subgen. Rubus, Rosaceae). Plant Syst Evol 160: 207–218

    Article  Google Scholar 

  • Nybom H (1990a) Genetic variation in ornamental apple trees and their seedlings (Malus, Rosaceae) revealed by DNA ‘fingerprinting’. Hereditas 113: 17–28

    Article  Google Scholar 

  • Nybom H (1990b) DNA fingerprints in sports of ‘Red Delicious’ apples. Hort Science 25: 1641–1642

    Google Scholar 

  • Nybom H (1991) Applications of DNA fingerprinting in plant breeding. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) DNA fingerprinting: approaches and applications, pp 294–311. Birkhäuser, Basel

    Chapter  Google Scholar 

  • Nybom H, Hall HK (1991) Minisatellite DNA “fingerprints ”can distinguish Rubus cultivars and estimate their degree of relatedness. Euphytica 53: 107–114

    Article  Google Scholar 

  • Nybom H, Ramser J, Kaemmer D, Kahl G, Weising K (1992) Oligonucleotide DNA fingerprinting detects a multiallelic locus in box elder. Molecular Ecology 1: 65–67

    Article  Google Scholar 

  • Nybom H, Rogstad SH (1990) DNA “fingerprints ”detect genetic variation in Acer negundo. Plant Syst 173: 49–56

    Article  Google Scholar 

  • Nybom H, Schaal BA, Rogstad SH (1989) DNA “fingerprints ”can distinguish cultivars of blackberries and raspberries. 5th International Symposium on Rubus & Ribes, Acta Hortic 262: 305–310

    Google Scholar 

  • Nybom H, Schaal BA (1990a) DNA “fingerprints ”applied to paternity analysis in apples (Malus × domestica).Theor Appl Genet 79: 763–768

    Google Scholar 

  • Nybom H, Schaal BA (1990b) DNA “fingerprints ”reveal genotypic distributions in natural populations of blackberries and raspberries (Rubus, Rosaceae). Amer J Bot 77: 883–888

    Article  Google Scholar 

  • Rogstad SH, Nybom H, Schaal BA (1991a) The tetrapod DNA fingerprinting M13 repeat probe reveals genetic diversity and clonal growth in quaking aspen (Populus tremuloides, Salicaceae). Plant Syst Evol 175: 115–123

    Article  Google Scholar 

  • Rogstad SH, Wolff K, Schaal BA (1991b) Geographical variation in Asimina triloba Dunal (Annonaceae) revealed by the M13 “DNA fingerprinting ”probe. Amer J Bot 78: 1391–1396

    Article  Google Scholar 

  • Tzuri G, Hillel J, Lavi U, Haberfeld A, Vainstein A (1991) DNA fingerprint analysis of ornamental plants. Plant Science 76: 91–98

    Article  Google Scholar 

  • van Heusden AW, Rouppe van der Voort J, Bachmann K (1991) Oligo-(GATA) fingerprints identify clones in asexual dandelions (Taraxacum, Asteraceae). Fingerprint News 3(2): 5–10

    Google Scholar 

  • van Houten WHJ, van Heusden AW, van der Woort JR, Raijmann L, Bachmann K (1991) Hypervariable DNA fingerprint loci in Microseris pygmaea (Asteraceae, Lactuceae). Botanica Acta 104: 252–255

    Article  Google Scholar 

  • van Oostrum H, Sterk AA, Wijsman HJW (1985) Genetic variation in agamospermous microspecies of Taraxacum sect. Erythrosperma and sect. Obliqua. Heredity 55: 223–228

    Article  Google Scholar 

  • Vassart G, Georges M, Monsieur R, Brocas H, Lequarré A-S, Cristophe D (1987) A sequence in M13 phage detects hypervariable minisatellites in human and animal DNA. Science 235: 683–684

    Article  Google Scholar 

  • Weising K, Beyermann B, Ramser J, Kahl G (1991) Plant DNA fingerprinting with radioactive and digoxigenated oligonucleotide probes complementary to simple repetitive DNA sequences. Electrophoresis 12: 159–169

    Article  Google Scholar 

  • Weising K, Kaemmer D, Weigand F, Epplen JT, Kahl G (1992) Oligonucleotide fingerprinting reveals various probe-dependent levels of informativeness in chickpea (Cicer arietinum). Genome 35: 436–442

    Article  Google Scholar 

  • Wolff K (1991) Analysis of allozyme variability in three Plantago species and a comparison to morphological variability. Theor App1 Genet 81: 119–126

    Google Scholar 

  • Wolff K, Rogstad SH, Schaal BA. Population structure of three Plantago species revealed by minisatellite DNA analysis (submitted)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Nybom, H. (1993). Applications of DNA fingerprinting in plant population studies. In: Pena, S.D.J., Chakraborty, R., Epplen, J.T., Jeffreys, A.J. (eds) DNA Fingerprinting: State of the Science. Progress in Systems and Control Theory. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8583-6_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8583-6_27

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2906-8

  • Online ISBN: 978-3-0348-8583-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics