Skip to main content

A unified approach to study hypervariable polymorphisms: Statistical considerations of determining relatedness and population distances

  • Chapter
Book cover DNA Fingerprinting: State of the Science

Part of the book series: Progress in Systems and Control Theory ((EXS))

Summary

Relatedness between individuals as well as evolutionary relationships between populations can be studied by comparing genotypic similarities between individuals. When hypervariable loci are used to describe genotypes, it is shown that both of these problems can be approached with a unified theory based on allele sharing between individuals. The distributions of the number of shared alleles between individuals indicate their kin relationships. Extending this, we obtain statistics for genetic distances between populations based on average number of alleles shared between individuals within and between two different populations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boerwinkle E, Xiong W, Fourest E, Chan L (1989) Rapid typing of tandemly repeated hypervariable loci by the polymerase chain reaction: Application to the apolipoprotein B 3’ hypervariable region. Proc Natl Acad Sci USA 86: 212–216

    Article  Google Scholar 

  • Burke T, Hanotte O, Bruford MW, Cairns E (1991) Multilocus and single locus minisatellite analysis in population biological studies. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) DNA Fingerprinting: Approaches and Applications. Birkhäuser Verlag, Basel, pp 154–168

    Chapter  Google Scholar 

  • Budowle B, Giusti AM, Waye JS, Baechtel FS, Fourney RM, Adams DE, Presley LA, Deadman HA, Monson KL (1991a) Fixed-bin analysis for statistical evaluation of continuous distributions of allelic data from VNTR loci, for use in forensic comparisons. Am J Hum Genet 48: 841–855

    Google Scholar 

  • Budowle B, Chakraborty R, Giusti AM, Eisenberg AE, Allen RC (1991b) Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE. Am J Hum Genet 48: 137–144

    Google Scholar 

  • Chakraborty R, deAndrade M, Daiger SP, Budowle B (1992) Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Genet 56: 45–59

    Article  Google Scholar 

  • Chakraborty R, Fornage M, Gueguen R, Boerwinkle E (1991) Population genetics of hypervariable loci: analysis of PCR based VNTR polymorphism within a population. In: Burke T, Dolf G, Jeffreys AJ, Wolff R (eds) DNA Fingerprinting: Approaches and Applications. Birkhäuser, Basel, pp 127–143

    Chapter  Google Scholar 

  • Chakraborty R, Jin L (1993) Determination of relatedness between individuals by DNA fingerprinting. Hum Biol (in press)

    Google Scholar 

  • Chakraborty R, Kidd KK (1991) The utility of DNA typing in forensic work. Science 254: 1735–1739

    Article  Google Scholar 

  • Chakraborty R, Schull WJ (1976) A note on the distribution of the number of exclusions to be expected in paternity testing. Am J Hum Genet 28: 615–618

    Google Scholar 

  • Clark AG (1987) Neutrality tests of highly polymorphic restriction-fragment-length polymorphisms. Am J Hum Genet 41: 948–956

    Google Scholar 

  • Deka R, Chakraborty R, DeCroo S, Rothhammer, F, Barton SA, Farrell RE (1992) Characteristics of polymorphism at a variable number of tandem repeat (VNTR) locus 3’ to the apolipoprotein B gene in five human populations. Am J Hum Genet 51: 1325–1333

    Google Scholar 

  • Devlin B, Risch N, Roeder K (1990) No excess of homozygosity at loci used for DNA fingerprinting. Science 249: 1416–1420

    Article  Google Scholar 

  • Edwards A, Civitello A, Hammond HA, Caskey CT (1991) DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet 49: 746–756

    Google Scholar 

  • Edwards A, Hammond HA, Jin L, Caskey CT, Chakraborty R (1992) Genetic variation of five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics 12: 241–253

    Article  Google Scholar 

  • Essen-Möller E (1938) Die Beweiskraft der Ähnlichkeit im Vaterschaftsnachweis; theoretische Grundlagen. Mitt Anthrop Ges 68: 9–53

    Google Scholar 

  • Flint J, Boyce AJ, Martinson JJ, Clegg JB (1989) Population bottlenecks in Polynesia revealed by minisatellite. Hum Genet 83: 257–263

    Article  Google Scholar 

  • Gilbert DA, Lehman N, O’Brien SJ, Wayne RK (1990) Genetic fingerprinting reflects population differentiation in the California Channel Island fox. Nature 344: 764–767

    Article  Google Scholar 

  • Gilbert DA, Packer C, Pusey AE, Stephens JC, O’Brien SJ (1991) Analytical DNA fingerprinting in lions: parentage, genetic diversity, and kinship. J Hered 82: 378–386

    Google Scholar 

  • Jeffreys AJ, Brookfield JFY, Semenoff R (1985a) Positive identification of an immigration test-case using human DNA fingerprints. Nature 317: 818–819

    Article  Google Scholar 

  • Jeffreys AJ, MacLeod A, Tamaki K, Neil DL, Monckton DG (1991) Minisatellite repeat coding as a digital approach to DNA typing. Nature 354: 204–209

    Article  Google Scholar 

  • Jeffreys AJ, Neumann R, Wilson V, Wong Z (1988) Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature 332: 278–281

    Article  Google Scholar 

  • Jeffreys AJ, Turner M, Debenham P (1991) The efficiency of multilocus DNA fingerprint probes for individualization and establishment of family relationships, determined from extensive case-work. Am J Hum Genet 48: 824–840

    Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL (1985) Hypervariable ‘minisatellite’ regions in the human DNA. Nature 314: 67–73

    Article  Google Scholar 

  • Jeffreys AJ, Wilson V, Thein SL, Weatherall DJ, Ponder BAJ (1986) DNA ‘fingerprints’ and segregation analysis of multiple markers in human pedigrees. Am J Hum Genet 39: 11–24

    Google Scholar 

  • Jin L, Chakraborty R (1993) Population dynamics of DNA fingerprinting patterns within and between populations.Genet Res (in press)

    Google Scholar 

  • Kimura M, Crow JF (1964) The number of alleles that can be maintained in a finite population. Genetic 49: 725–738

    Google Scholar 

  • Li CC, Sacks L (1954) The derivation of joint distribution and correlation between relatives by the use of stochastic matrices. Biometrics 10: 347–360

    Article  Google Scholar 

  • Li WH, Nei M (1975) Drift variances of heterozygosity and genetic distance in transient states. Genet Res 25: 229–248

    Article  Google Scholar 

  • Lynch M (1988) Estimation of relatedness by DNA fingerprinting. Mol Biol Evol 5: 584–599

    Google Scholar 

  • Nakamura Y, Leppert M, O’Connell P, Wolff R, Holm T, Culver M, Martin C, Fujimoto E, Hoff M, Kumlin E, White R (1987) Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Amer Nature 106: 283–292

    Article  Google Scholar 

  • Nei M (1975) Molecular Population Genetics and Evolution. North-Holland, Amsterdam New York

    Google Scholar 

  • Nei M (1987) Molecular Evolutionary Genetics. Columbia University Press, New York

    Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269–5273

    Article  Google Scholar 

  • Nei M, Roychoudhury AK (1982) Genetic relationship and evolution of human races. Evol Biol 14: 1–59

    Google Scholar 

  • Saitou N, Nei M (1986) The number of nucleotides required to determine the branching order of three species with special reference to the human-chimpanzee-gorilla divergence. J Mol Evol 24: 189–204

    Article  Google Scholar 

  • Stephens JC, Gilbert DA, Yuhki N, O’Brien SJ (1992) Estimation of heterozygosity for single-probe multilocus DNA fingerprints. Mol Biol Evol 9: 729–743

    Google Scholar 

  • Thompson EA (1991) Estimation of relationship from genetic data. In: Rao CR, Chakraborty R (eds) Handbook of Statistics 8. North-Holland. Amsterdam London New York Tokyo

    Google Scholar 

  • Weissenbach J, Gyapay G, Dib C, Vignal A, Morissette J, Milasseau P, Vaysseix G, Lathrop M (1992) A second-generation linkage map of the human genome. Nature 359: 794–801

    Article  Google Scholar 

  • Wyman AR, White R (1980) A highly polymorphic locus in human DNA. Proc Natl Acad Sci USA 77: 6754–6758

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Basel AG

About this chapter

Cite this chapter

Chakraborty, R., Jin, L. (1993). A unified approach to study hypervariable polymorphisms: Statistical considerations of determining relatedness and population distances. In: Pena, S.D.J., Chakraborty, R., Epplen, J.T., Jeffreys, A.J. (eds) DNA Fingerprinting: State of the Science. Progress in Systems and Control Theory. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8583-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8583-6_14

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-2906-8

  • Online ISBN: 978-3-0348-8583-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics