Skip to main content

On the Long Time Behavior of Approximating Dynamical Systems

  • Conference paper
Control and Estimation of Distributed Parameter Systems

Part of the book series: ISNM International Series of Numerical Mathematics ((ISNM,volume 143))

Abstract

In this paper we consider the impact of using “time marching” numerical schemes for computing asymptotic solutions of nonlinear differential equations. We show that stable and consistent approximating schemes can produce numerical solutions that do not correspond to the correct asymptotic solutions of the differential equation. In addition, we show that this problem cannot be avoided by placing additional side conditions on the boundary value problem, even if the numerical scheme preserves the side conditions at every step. Examples are given to illustrate the problems that can arise and the implications of using such methods in control design are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] E. Allen, J. A. Burns, D. S. Gilliam, J. Hill and V. I. Shubov, The Impact of Finite Precision Arithmetic and Sensitivity on the Numerical Solution of Partial Differential Equations, Journal of Mathematical and Computer Modelling, to appear.

    Google Scholar 

  2. H. T. Banks and K. Kunisch, An Approximation Theory for Nonlinear Partial Differential Equations with Applications to Identication and Control, SIAM J. Control and Optimization, Vol. 20, (1982), 815–489.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. M. Burgers, Application of a Model System to Illustrate Some Points of the Statistical Theory of Free Turbulence, Proc. Acad. Sci. Amsterdam, Vol. 43, (1940), 2–12.

    MathSciNet  Google Scholar 

  4. J. A. Burns, A. Balogh, D. Gilliam and V. Shubov, Numerical Stationary Solutions for a Viscous Burgers’ Equation, Journal of Mathematical Systems, Estimation and Control, Vol. 8, (1998), 189–192.

    MathSciNet  MATH  Google Scholar 

  5. C. I. Byrnes, D. S. Gilliam and V. I. Shubov, Boundary Control, Feedback Stabilization and the Existence of Attractors for a Viscous Burgers’ Equation, Preprint,(1994).

    Google Scholar 

  6. C. I. Byrnes, D. S. Gilliam, V. I. Shubov and Z. Xu, Steady State Response to Burgers’ Equation with Varying Viscosity, Progress in Systems and Control: Computation and Control IV,K. L. Bowers and J. Lund, eds., Birkhäuser, 75–98, 1995.

    Google Scholar 

  7. C. I. Byrnes, D. S. Gilliam and V. I. Shubov, On the Global Dynamics of a Controlled Viscous Burgers’ Equation, Journal of Dynamical and Control Systems, Vol. 4, (1998), 457–519.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. I. Byrnes, D. S. Gilliam and V. I. Shubov, Boundary Control, Stabilization and Zero Pole Dynamics for a Nonlinear Distributed Parameter, International Journal of Robust and Nonlinear Control, Vol. 9, (1999), 737–768.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Cao and E. S. Titi, Asymptotic Behavior of Viscous Burgers’ Equations with Neumann Boundary Conditions, Private Communication.

    Google Scholar 

  10. P. Embid, J. Goodman and A. Majda, Multiple Steady States for 1-D Transonic Flow, SIAM J. Sci. Computing, Vol. 5, (1984), 21–41.

    Article  MathSciNet  MATH  Google Scholar 

  11. C.A.J. Fletcher, Burgers’ Equation: A Model For All Reasons, Numerical Solutions of Partial Differential Equations,J. Noye. ed., North-Holland Publishing, 139–225, 1982.

    Google Scholar 

  12. C.A.J. FletcherComputational Galerkin MethodsSpringer-Verlag, New York, 1984.

    Google Scholar 

  13. M. Garbey and H. G. Kaper, Asymptotic-Numerical Study of Supersensitivity for Generalized Burgers’ Equation, SIAM J. Sci. Computing, Vol. 22, (2000), 368–385.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Jameson, Airfoils Admitting Non-unique Solutions of the Euler Equations, AIAA 22nd Fluid Dynamics, Plasmadynamics Lasers Conference, Honolulu, (1991), Paper AIAA 91–1625.

    Google Scholar 

  15. T. Kato, Pertubation Theory for Linear Operators, Springer-Verlag, New York, 1966.

    Google Scholar 

  16. H. Van Ly, K. D. Mease and E. S. Titi, Some Remarks on Distributed and Boundary Control of the Viscous Burgers’ Equation, Numer. Funct. Anal. Optim., Vol 18, (1993), 143–188.

    Article  MathSciNet  Google Scholar 

  17. G. Kreiss and H. O. Kreiss, Convergence to Steady State of Solutions of Burgers’ Equation, Applied Numerical Mathematics, Vol. 2, (1986), 161–179.

    Article  MathSciNet  MATH  Google Scholar 

  18. H. O. Kreiss and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, 1989.

    MATH  Google Scholar 

  19. O. A. Ladyzhenskaya and A. A. Kiselev, On the Existence and Uniqueness of the Solution of the Nonstationary Problem for a Viscous Incompressible Fluid, Izv. Akad. Nauk SSSR Ser. Mat., Vol. 21, (1957), 655–680.

    MATH  Google Scholar 

  20. H. Marrekchi, Dynamic Compensators for a Nonlinear Conservation Law, Ph.D. Thesis, Department of Mathematics, Virginia Polytechnic Institute and State University, 1993.

    Google Scholar 

  21. H. Matano, Convergence of Solutions of One Dimensional Semilinear Parabolic Equations, J. Math Kyoto Univ., Vol. 18, (1978), 221–227.

    MathSciNet  MATH  Google Scholar 

  22. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    Book  MATH  Google Scholar 

  23. S. M. Pugh, Finite Element Approximations of Burgers’ Equation, Masters of Science Thesis, Department of Mathematics, Virginia Polytechnic Institute and State University, 1995.

    Google Scholar 

  24. L. G. Reyna and M. J. Ward, On the Exponentially Slow Motion of a Viscous Shock, Communications on Pure and Applied Math., Vol. XLVIII, (1995), 79–120.

    Article  MathSciNet  Google Scholar 

  25. M. D. Salas, S. Abarbanel and D. Gottlieb, Multiple Steady States for Characteristic Initial Value Problems, Appl. Numer. Math. Vol. 2, (1986), 193–210.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Basel AG

About this paper

Cite this paper

Burns, J.A., Singler, J.R. (2003). On the Long Time Behavior of Approximating Dynamical Systems. In: Desch, W., Kappel, F., Kunisch, K. (eds) Control and Estimation of Distributed Parameter Systems. ISNM International Series of Numerical Mathematics, vol 143. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8001-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8001-5_5

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9399-2

  • Online ISBN: 978-3-0348-8001-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics