Skip to main content

The Role of Inflammation in Colon Cancer

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 816))

Abstract

Colorectal cancer (CRC) is the one of the leading causes of cancer-related deaths in the world. CRC is responsible for more than 600,000 deaths annually and incidence rates are increasing in most of the developing countries. Epidemiological and laboratory investigations suggest that environmental factors such as western style dietary habits, tobacco-smoking, and lack of physical activities are considered as risks for CRC. Molecular pathobiology of CRC implicates pro-inflammatory conditions to promote the tumor malignant progression, invasion, and metastasis. It is well known that patients with inflammatory bowel disease are at higher risk of CRC. Many evidences exist reiterating the link between Inflammation and CRC. Inflammation involves interaction between various immune cells, inflammatory cells, chemokines, cytokines, and pro-inflammatory mediators, such as cyclooxygenase (COX) and lipoxygenase (LOX) pathways, which may lead to signaling towards, tumor cell proliferation, growth, and invasion. Thus, this review will focus on mechanisms by which pro-inflammatory mediators and reactive oxygen/nitrogen species play a role in promoting CRC. Based on these mechanisms, various preventive strategies, involving anti-inflammatory agents, such as COX inhibitors, COX-LOX inhibitors, iNOS inhibitors, natural supplements/agents, and synthetic agents, that blocks the inflammatory pathways and suppress CRC are discussed in this review.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CRC:

Colorectal cancer

CAC:

Colitis-associated cancer

IBD:

Inflammatory bowel disease

NSAIDs:

Non-steroidal anti-inflammatory drugs

NK:

Natural killer cells

DC:

Dendritic cells

ACF:

Aberrant crypt foci

T reg:

T regulatory cells

5-ASA:

5-aminosalicylic acid

MCP-1:

Monocytes chemo attractant protein 1

PGE2 :

Prostaglandin E2

IL-8:

Interleukin-8

IL-6:

Interleukin-6

IL-10:

Interleukin 10

TNF-α:

Tumor necrosis factor- α

COX-2:

Cyclooxygenase-2

PGI2 :

Prostaglandin I2

PGD2 :

Prostaglandin D2

LT:

Leukotriene

HPETE:

Hydroperoxyeicosatetraenoic acid

EETs:

Epoxy-eicosatrienoic acids

EPA:

Eicosapentaenoic acid

DHA:

Decosahexaenoic acid

PUFAs:

Polyunsaturated fatty acids (PUFAs)

LX:

Lipoxins

RVs:

Resolvins

AOM:

Azoxymethane

NO:

Nitric oxide

NF-κB:

Nuclear factor–κB

MMP:

Matrix metalloproteinase

PI3K:

Phosphatidylinositol 3-kinase

mPGES:

Microsomal prostaglandin E synthase

VEGF:

Vascular endothelial growth factor

FLAP:

Five lox activating protein

DP1:

PGD2 receptor

ROS:

Reactive oxygen species

RNS:

Reactive nitrogen species

NO:

Nitric oxide

iNOS:

Inducible nitric oxide synthase

nNOS:

Neuronal nitric oxide synthase

eNOS:

Endothelial nitric oxide synthase

APC:

Adenomatous polyposis coli

LPS:

Lipopolysaccharide

IL-1β:

Interleukin-1β

AA:

Arachidonic acid

NO-NSAID:

NO-releasing NSAID

IL-4:

Interleukin 4

COXibs:

COX-2-specific inhibitors

FAP:

Familial adenomatous polyposis

L-NAME:

L-nitro arginine methyl ester

Se-PBIT:

Selenium [S,S’-1,4-phenylenebis(1,2-ethanediyl) bis-isothiourea]

GI:

Gastrointestinal

MIP:

Macrophage inflammatory protein

MCP:

Monocytes chemo attractant protein

ABC:

ATP-binding cassette

DMH:

Dimethyl hydrazine

MDFs:

Mucin depleted foci

DSS:

Dextran sulfate sodium

EPA-FFA:

Eicosapentaenoic acid-free fatty acid

ONA:

Oleanolic acid

OT:

18α-olean-12-ene-3β-23,28-triol

18R-RvE1:

5,12,18R-trihydroxy-EPA

LXA4 :

lipoxins A4

ABC:

ATP-binding cassette

References

  • Abe Y, Hashimoto S, Horie T (1999) Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res 39(1):41–47

    CAS  PubMed  Google Scholar 

  • Ahn B, Ohshima H (2001) Suppression of intestinal polyposis in Apc (Min/+) mice by inhibiting nitric oxide production. Cancer Res 61:8357–8360

    CAS  PubMed  Google Scholar 

  • Ahnen D, Hixson L, Albcrts D, Bogert C, Einspahr K, Brendel P, Gross N, Paranlea R, Pamukeu R (1994) Sulindac and its sulfone metabolite (FGN-1) both inhibit rat colon carcinogenesis but neither inhibit colonic proliferation. Proc Am Assoc Cancer Res 35:631

    Google Scholar 

  • Alberts DS et al (2005) What happened to the COXibs on the way to the cardiologist? Cancer Epidemiol. Biomarkers Prev 14:555–556

    Google Scholar 

  • Alfaras I, Juan ME, Planas JM (2010a) Trans-resveratrol reduces precancerous colonic lesions in dimethylhydrazine-treated rats. J Agric Food Chem 58(13):8104–8110

    CAS  PubMed  Google Scholar 

  • Alfaras I, Pérez M, Juan ME, Merino G, Prieto JG, Planas JM, Alvarez AI (2010b) Involvement of breast cancer resistance protein (BCRP1/ABCG2) in the bioavailability and tissue distribution of trans-resveratrol in knockout mice. J Agric Food Chem 58(7):4523–4528

    CAS  PubMed  Google Scholar 

  • Al-Salihi MA, Pearman AT, Doan T, Reichert EC, Rosenberg DW, Prescott SM, Stafforini DM, Topham MK (2009) Transgenic expression of cyclooxygenase-2 in mouse intestine epithelium is insufficient to initiate tumorigenesis but promotes tumor progression. Cancer Lett 273(2):225–232

    CAS  PubMed Central  PubMed  Google Scholar 

  • Arber N, Eagle CJ, Spicak J, Rácz I, Dite P, Hajer J, Zavoral M, Lechuga MJ, Gerletti P, Tang J, Rosenstein RB, Macdonald K, Bhadra P, Fowler R, Wittes J, Zauber AG, Solomon SD, Levin B, PreSAP Trial Investigators (2006) Celecoxib for the prevention of colorectal adenomatous polyps. N Engl J Med 355(9):885–895

    Google Scholar 

  • Arita M, Yoshida M, Hong S, Tjonahen E, Glickman JN, Petasis NA, Blumberg RS, Serhan CN (2005) Proc Natl Acad Sci 102:7671–7676

    CAS  PubMed Central  PubMed  Google Scholar 

  • Askling J, Dickman PW, Karlen P et al (2001) Family history as a risk factor for colorectal cancer in inflammatory bowel disease. Gastroenterology 120:1356–1362

    CAS  PubMed  Google Scholar 

  • Atreya I, Atreya R, Neurath MF (2008) NF-kappaB in inflammatory bowel disease. J Intern Med 263:591–596

    CAS  PubMed  Google Scholar 

  • Atreya I, Neurath MF (2008) Immune cells in colorectal cancer: prognostic relevance and therapeutic strategies. Expert Rev Anticancer Ther 8:561–572

    CAS  PubMed  Google Scholar 

  • Avis I, Hong SH, Martinez A, Moody T, Choi YH, Trepel J et al (2001) Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. J Fed Am Soc Exp Biol 15:2007–2009

    CAS  Google Scholar 

  • Babbs CF (1990) Free radicals and etiology of colon cancer. Free Rad Biol Med 8:191–200

    CAS  PubMed  Google Scholar 

  • Bajad S, Coumar M, Khajuria R, Suri OP, Bedi KL (2003) Characterization of a new rat urinary metabolite of piperine by LC/NMR/MS studies. Eur J Pharm Sci 19(5):413–421

    CAS  PubMed  Google Scholar 

  • Bansal P, Sonnenberg A (1996) Risk factors of colorectal cancer in inflammatory bowel disease. Am J Gastroenterol 91(1):44–48

    CAS  PubMed  Google Scholar 

  • Baron JA et al (2003) A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med 348:891–899

    CAS  PubMed  Google Scholar 

  • Bartosz G (1996) Peroxynitrite mediator of the toxic action of nitric oxide. Acta Biochim Polon 43:645–660

    CAS  PubMed  Google Scholar 

  • Belliveau P, Graham AM (1984) Mesenteric desmoid tumor in Gardener’s syndrome treated by sulindac. Dis Colon Rectum 27:53–54

    CAS  PubMed  Google Scholar 

  • Bhat BG, Chandrasekhara N (1986) Studies on the metabolism of piperine: absorption, tissue distribution and excretion of urinary conjugates in rats. Toxicology 40(1):83–92

    CAS  PubMed  Google Scholar 

  • Bias P, Buchner A, Klesser B, Laufer S (2004) The gastrointestinal tolerability of the LOX/COX inhibitor, licofelone, is similar to placebo and superior to naproxen therapy in healthy volunteers: results from a randomized, controlled trial. Am J Gastroenterol 99:611–618

    CAS  PubMed  Google Scholar 

  • Bombardier C et al VIGOR Study Group (2000) Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. N Engl J Med 343:1520–1528

    Google Scholar 

  • Boolbol SK, Dannenberg AJ, Chadburn A et al (1996) Cyclooxygenase-2 overexpression and tumor formation are blocked by sulindac in a murine model of familial adenomatous polyposis. Cancer Res 56:2556–2560

    CAS  PubMed  Google Scholar 

  • Bortuzzo C, Hanif R, Kashfi K, Staiano-Coico L, Shiff SJ, Rigas B et al (1996) The effect of leukotrienes B and selected HETEs on the proliferation of colon cancer cells. Biochimica et Biophysical Acta 1300:240–246

    Google Scholar 

  • Boudreau MD, Sohn KH, Rhee SH, Lee SW, Hunt JD, Hwang DH (2001) Suppression of tumor cell growth both in nude mice and in culture by n-3 polyunsaturated fatty acids: mediation through cyclooxygenase-independent pathways. Cancer Res 61(4):1386–1391

    CAS  PubMed  Google Scholar 

  • Bresalier RS et al (2005) Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med 352:1092–1102

    CAS  PubMed  Google Scholar 

  • Brown JR, DuBois RN (2005) COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 23:2840–2855

    CAS  PubMed  Google Scholar 

  • Byrum RS, Goulet JL, Griffiths RJ, Koller BH (1997) Role of the 5-lipoxygenase-activating protein (FLAP) in murine acute inflammatory responses. J Exp Med 185:1065–1075

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calviello G, Di Nicuolo F, Gragnoli S, Piccioni E, Serini S, Maggiano N, Tringali G, Navarra P, Ranelletti FO, Palozza P (2004) n-3 PUFAs reduce VEGF expression in human colon cancer cells modulating the COX-2/PGE2 induced ERK-1 and -2 and HIF-1alpha induction pathway. Carcinogenesis 25(12):2303–2310

    CAS  PubMed  Google Scholar 

  • Campbell EL, MacManus CF, Kominsky DJ, Keely S, Glover LE, Bowers BE, Scully M, Bruyninckx WJ, Colgan SP (2010) Resolvin E1-induced intestinal alkaline phosphatase promotes resolution of inflammation through LPS detoxification. Proc Natl Acad Sci U S A 107(32):14298–14303

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cannizzo F Jr, Broitman SA (1989) Post promotional effects of dietary marine or safflower oils on large bowel or pulmonary implants of CT-26 in mice. Cancer Res 49(15):4289–4294

    CAS  PubMed  Google Scholar 

  • Canny G, Levy O, Furuta GT, Narravula-Alipati S, Sisson RB, Serhan CN et al (2002) Lipid mediator-induced expression of bactericidal/permeability-increasing protein (BPI) in human mucosal epithelia. Proc Natl Acad Sci 99:3902–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Castellone MD, Teramoto H, Gutkind JS (2006) Cyclooxygenase-2 and colorectal cancer chemoprevention: the beta-catenin connection. Cancer Res 66:11085–11088

    CAS  PubMed  Google Scholar 

  • Cerutti P (1985) Prooxidant states and tumor promotion. Science 227:375–381

    CAS  PubMed  Google Scholar 

  • Chan AT, Giovannucci EL, Meyerhardt JA et al (2005) Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA 294(8):914–923

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng AL, Hsu CH, Lin JK, Hsu MM, Ho YF, Shen TS, Ko JY, Lin JT, Lin BR, Ming-Shiang W, Yu HS, Jee SH, Chen GS, Chen TM, Chen CA, Lai MK, Pu YS, Pan MH, Wang YJ, Tsai CC, Hsieh CY (2001) Phase I clinical trial of curcumin, a chemopreventive agent, in patients with high-risk or pre-malignant lesions. Anticancer Res 21(4B):2895–2900

    CAS  PubMed  Google Scholar 

  • Chulada PC, Thompson MB, Mahler JF, Doyle CM, Gaul BW, Lee C, Tiano HF, Morham SG, Smithies O, Langenbach R (2000a) Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in Min mice. Cancer Res 60(17):4705–4708

    CAS  PubMed  Google Scholar 

  • Chulada PC, Thompson MB, Mahler JF et al (2000b) Genetic disruption of Ptgs-1 as well as Ptgs-2 reduces intestinal tumorigenesis in Min mice. Cancer Res 60:4706–4708

    Google Scholar 

  • Cicero AF, Derosa G, Gaddi A (2005) Combined lipoxygenase/cyclo-oxygenase inhibition in the elderly: the example of licofelone. Drugs Aging 22:393–403

    CAS  PubMed  Google Scholar 

  • Claria J, Serhan CN (1995) Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell—leukocyte interactions. Proc Natl Acad Sci 92:9475–9479

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clevers H (2004) At the crossroads of inflammation and cancer. Cell 118:671–674

    Google Scholar 

  • Cockbain AJ, Toogood GJ, Hull MA (2012) Omega-3 polyunsaturated fatty acids for the treatment and prevention of colorectal cancer. Gut 61:135–149

    Google Scholar 

  • Colon AL, Menchen L, Lizasoain I et al (2000) Inducible nitric oxide synthase activity is expressed not only in inflamed but also in normal colonic mucosa in patients with ulcerative colitis: a potential prognostic marker. Am J Gastroenterol 95:1371–1373

    CAS  PubMed  Google Scholar 

  • Cottart CH, Nivet-Antoine V, Laguillier-Morizot C, Beaudeux JL (2010) Resveratrol bioavailability and toxicity in humans. Mol Nutr Food Res 54(1):7–16

    CAS  PubMed  Google Scholar 

  • Crowell JA, Steele VE, Sigman CC, Fay JR (2003) Is inducible nitric oxide synthase a target for chemoprevention? Mol Cancer Ther 2:815–823

    CAS  PubMed  Google Scholar 

  • Dannenberg AJ, Lippman SM, Mann JR, Subbaramaiah K, Dubois RN (2005) Cyclooxygenase-2 and epidermal growth factor receptor: pharmacologic targets for chemoprevention. J Clin Oncol 23:254–266

    CAS  PubMed  Google Scholar 

  • Darshan S, Doreswamy R (2004) Patented antiinflammatory plant drug development from traditional medicine. Phytother Res 18(5):343–357

    CAS  PubMed  Google Scholar 

  • Ding XZ, Iversen P, Cluck MW et al (1999) Lipoxygenase inhibitors abolish proliferation of human pancreatic cancer cells. Biochem Biophys Res Commun 261:218–223

    CAS  PubMed  Google Scholar 

  • Ding XZ, Tong WG, Adrian TE (2003) Multiple signal pathways are involved in the mitogenic effect of 5(S)- HETE in human pancreatic cancer. Oncology 65:285–294

    CAS  PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    CAS  PubMed  Google Scholar 

  • Erdman SE, Sohn JJ, Rao VP et al (2005) CD4CD25 regulatory lymphocytes induce regression of intestinal tumors in ApcMin/ mice. Cancer Res 65:3998–4004

    CAS  PubMed  Google Scholar 

  • Feagins LA, Souza RF, Spechler SJ (2009) Carcinogenesis in IBD: potential targets for the prevention of colorectal cancer. Nat Rev Gastroenterol Hepatol 6:297–305

    CAS  PubMed  Google Scholar 

  • Fiorucci S, Meli R, Bucci M, Cirino G (2001) Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochem Pharmacol 62:1433–1438

    CAS  PubMed  Google Scholar 

  • Freedman AN et al (1998) Aspirin use and p53 expression in colorectal cancer. Cancer Detect Prev 22:213–218

    CAS  PubMed  Google Scholar 

  • Garcea G, Berry DP, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ (2005) Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiol Biomarkers Prev 14(1):120–125

    CAS  PubMed  Google Scholar 

  • Gewirtz AT, Collier-Hyams LS, Young AN, Kucharzik T, Guilford WJ, Parkinson JF et al (2002) Lipoxin A4 analogs attenuate induction of intestinal epithelial proinflammatory gene expression and reduce the severity of dextran sodium sulfate-induced colitis. J Immunol 168(10):5260–5267

    CAS  PubMed  Google Scholar 

  • Giardello FM, Hamilton SR, Krush AJ, Piantodosi S, Hylind LM, Cleano P, Booker SV, Robinson RC, Offerhaus GJA (1993) Treatment of colonic rectal adenomas with sulindac in familial adenomatous polyposis. N Eng J Med 328:1313–1316

    Google Scholar 

  • Giovannucci E (1999) The prevention of colorectal cancer by aspirin use. Biomed Pharmacother 53:303–308

    CAS  PubMed  Google Scholar 

  • Giovannucci E et al (1994) Aspirin use and the risk for colorectal cancer and adenoma in male health professionals. Ann Intern Med 121:241–246

    CAS  PubMed  Google Scholar 

  • Goel A, Kunnumakkara AB, Aggarwal BB (2008) Curcumin as “Curecumin”: from kitchen to clinic. Biochem Pharmacol 75(4):787–809

    CAS  PubMed  Google Scholar 

  • Goldstein BD, Witz G (1990) Free radicals and carcinogenesis. Free Radic Res Commun 11:3–10

    CAS  PubMed  Google Scholar 

  • Goulet JL, Snouwaert JN, Latour AM, Coffman TM, Koller BH (1994) Altered inflammatory responses in leukotriene-deficient mice. Proc Natl Acad Sci USA 91(26):12852–12856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Greenberg ER, Baron JA, Freeman DH, Mandel JS, Haile R (1993) Reduced risk of large-bowel adenomas among aspirin users. The Polyp Prevention Study Group. J Natl Cancer Inst 85:912–916

    CAS  PubMed  Google Scholar 

  • Griffiths RJ, Smith MA, Roach ML, Stock JL, Stam EJ, Milici AJ et al (1997) Collagen-induced arthritis is reduced in 5-lipoxygenase-activating protein-deficient mice. J Exp Med 185:1123–1129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta RA, Dubois RN (2001) Colorectal cancer prevention and treatment by inhibition of cyclooxygenase-2. Nature Rev Cancer 1:11–21

    CAS  Google Scholar 

  • Haklar G, Sayin-Özveri E, Yüksel M, Aktan AÖ, Yalçin AS (2001) Different kinds of reactive oxygen and nitrogen species were detected in colon and breast tumors. Cancer Lett 165(2):219–224

    CAS  PubMed  Google Scholar 

  • Hammad H, de Heer HJ, Soullie T, Hoogsteden HC, Trottein F, Lambrecht BN (2003) Prostaglandin D2 inhibits airway dendritic cell migration and function in steady state conditions by selective activation of the D prostanoid receptor 1. J Immunol 171:3936–3940

    CAS  PubMed  Google Scholar 

  • Hao XP, Pretlow TG, Rao JS, Pretlow TP (2001) Inducible nitric oxide synthase (iNOS) is expressed similarly in multiple aberrant crypt foci and colorectal tumors from the same patients. Cancer Res 61:419–422

    CAS  PubMed  Google Scholar 

  • Harris RE, Beebe-Donk J, Doss H, Burr D (2005) Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: a critical review of non-selective COX-2 blockade. Oncol Rep 13:559–583

    CAS  PubMed  Google Scholar 

  • Hawk ET, Levin B (2005) Colorectal cancer prevention. J Clin Oncol 23:378

    PubMed  Google Scholar 

  • Hofseth LJ, Hussain SP, Wogan GN, Harris CC (2003) Nitric oxide in cancer and chemoprevention. Free Radic Biol Med 34:955–968

    CAS  PubMed  Google Scholar 

  • Hong SH, Avis I, Vos MD, Martinez A, Treston AM, Mulshine JL (1999) Relationship of arachidonic acid metabolizing enzyme expression in epithelial cancer cell lines to the growth effect of selective biochemical inhibitors. Cancer Res 59:2223–2228

    CAS  PubMed  Google Scholar 

  • Ishida T, Yoshida M, Arita M, Nishitani Y, Nishiumi S, Masuda A et al (2009) Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis. Inflammation and Bowel Diseases 16(1):87–95

    Google Scholar 

  • Ishida T, Yoshida M, Arita M, Nishitani Y, Nishiumi S, Masuda A, Mizuno S, Takagawa T, Morita Y, Kutsumi H, Inokuchi H, Serhan CN, Blumberg RS, Azuma T (2010) Resolvin E1, an endogenous lipid mediator derived from eicosapentaenoic acid, prevents dextran sulfate sodium-induced colitis. Inflamm Bowel Dis 16(1):87–95

    PubMed Central  PubMed  Google Scholar 

  • Jacoby RF, Marshall DJ, Newton MA, Novakovic K, Tutsch K, Cole CE et al (1996) Chemoprevention of spontaneous intestinal adenomas in APC Min mouse model by the nonsteroidal anti-inflammatory drug piroxicam. Cancer Res 56:710–714

    CAS  PubMed  Google Scholar 

  • Jacoby RF, Seibert K, Cole CE, Kelloff G, Lubet RA (2000) The cyclooxygenase-2 inhibitor celecoxib is a potent preventive and therapeutic agent in the Min mouse model of adenomatous polyposis. Cancer Res 60:5040–5044

    CAS  PubMed  Google Scholar 

  • Janakiram NB, Rao CV (2012) iNOS-selective inhibitors for cancer prevention: promise and progress. Future Med. Chem. 4(17):2193–2204

    CAS  PubMed Central  PubMed  Google Scholar 

  • Janakiram NB, Indranie C, Malisetty SV, Jagan P, Steele VE, Rao CV (2008) Chemoprevention of colon carcinogenesis by oleanolic acid and its analog in male F344 rats and modulation of COX-2 and apoptosis in human colon HT-29 cancer cells. Pharm Res 25(9):2151–2157

    CAS  PubMed  Google Scholar 

  • Janakiram NB, Mohammed A, Rao CV (2011) Role of lipoxins, resolvins, and other bioactive lipids in colon and pancreatic cancer. Cancer Metastasis Rev 30(3–4):507–523

    CAS  PubMed  Google Scholar 

  • Janakiram NB, Mohammed A, Ravillah D, Choi C-I, Zhang Y, Desai D, Amin S and Rao CV. (2013) Chemopreventive effects of PBI-Se, a selenium-containing analog of PBIT, on AOM-induced aberrant crypt foci in F344 rats. Oncol Rep 30(2):952--960

    Google Scholar 

  • Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275(5297):218–220

    CAS  PubMed  Google Scholar 

  • Juan ME, Alfaras I, Planas JM (2010) Determination of dihydroresveratrol in rat plasma by HPLC. J Agric Food Chem 58(12):7472–7475

    CAS  PubMed  Google Scholar 

  • Juan ME, Alfaras I, Planas JM (2012) Colorectal cancer chemoprevention by trans-resveratrol. Pharmacol Res 65(6):584–591

    CAS  PubMed  Google Scholar 

  • Juarez-Oropeza MA, Diaz-Zagoya JC, Rabinowitz JL (1987) In vivo and in vitro studies of hypocholesterolemic effects of diosgenin in rats. Int J Biochem 19(8):679–683

    CAS  PubMed  Google Scholar 

  • Kato T, Hancock RL, Mohammadpour H, McGregor B, Manalo P, Khaiboullina S, Hall MR, Pardini L, Pardini RS (2002) Influence of omega-3 fatty acids on the growth of human colon carcinoma in nude mice. Cancer Lett 187(1–2):169–177

    CAS  PubMed  Google Scholar 

  • Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, Reddy BS (1999) Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59(3):597–601

    CAS  PubMed  Google Scholar 

  • Kawamori T, Rao CV, Seibert K, Reddy BS (1998) Chemopreventive activity of celecoxib, a specific cyclooxygenase-2 inhibitor, against colon carcinogenesis. Cancer Res 58:409–412

    CAS  PubMed  Google Scholar 

  • Kawamori T, Takahashi M, Watanabe K et al (2000) Suppression of azoxymethane-induced colonic aberrant crypt foci by a nitric oxide synthase inhibitor. Cancer Lett 148:33–37

    CAS  PubMed  Google Scholar 

  • Kawamori T, Tanaka T, Hara A, Yamahara J, Mori H (1995) Modifying effects of naturally occurring products on the development of colonic aberrant crypt foci induced by azoxymethane in F344 rats. Cancer Res 55(6):1277–1282

    CAS  PubMed  Google Scholar 

  • Kudo T, Narisawa T, Abo S (1980) Antitumor activity of indomethacin on methylazoxymethanol-induced large bowel tumors in rats. Gann 71(2):260–264

    CAS  PubMed  Google Scholar 

  • Kune GA, Kune S, Watson LF (1988) Colorectal cancer risk, chronic illnesses, operations, and medications: case control results from the Melbourne Colorectal Cancer Study. Cancer Res 1988 48:4399–4404. Reprinted Int J Epidemiol 2007 36:951–956

    Google Scholar 

  • Kwon CS, Sohn HY, Kim SH, Kim JH, Son KH, Lee JS, Lim JK, Kim JS (2003) Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents. Biosci Biotechnol Biochem 67(7):1451–1456

    CAS  PubMed  Google Scholar 

  • La Vecchia C et al (1977) Aspirin and colorectal cancer. Br J Cancer 76:675–677

    Google Scholar 

  • Lagares-Garcia JA, Moore RA, Collier B, Heggere M, Diaz F, Qian F (2001) Nitric oxide synthase as a marker in colorectal carcinoma. Am J Surg 67:709–713

    CAS  Google Scholar 

  • Laine L, Wogen J, Yu H (2003) Gastrointestinal health care resource utilization with chronic use of COX-2-specific inhibitors versus traditional NSAIDs. Gastroenterology 125:389–395

    CAS  PubMed  Google Scholar 

  • Lakatos PL, Lakatos L (2008) Risk for colorectal cancer in ulcerative colitis: changes, causes and management strategies. World J Gastroenterol 14:3937–3947

    PubMed Central  PubMed  Google Scholar 

  • Laybayle D, Fischer D, Vielh P, Frouhin F, Pariente A, Bories C, Duhamael O, Trousset M, Atti P (1991) Sulindac causes regression of rectal polyps in familial adenomatous polyposis. Gastroenterology 101:635–639

    Google Scholar 

  • Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J Ethnopharmacol 49:57–68

    CAS  PubMed  Google Scholar 

  • Logan RF, Little J, Hawtin PG, Hardcastle JD (1993) Effect of aspirin and non-steroidal anti-inflammatory drugs on colorectal adenomas: case—control study of subjects participating in the Nottingham faecal occult blood screening programme. Br Med J 307:285–289

    CAS  Google Scholar 

  • Mahato SB, Sen S (1997) Advances in triterpenoid research, 1990–1994. Phytochemistry 44(7):1185–1236

    CAS  PubMed  Google Scholar 

  • Mahmoud NN, Dannenberg AJ, Mestre J et al (1998) Aspirin prevents tumors in a murine model of familial adenomatous polyposis. Medline Surg 124:225–231

    CAS  Google Scholar 

  • Marnett LJ (1992) Aspirin and potential role of prostaglandins in colon cancer. Cancer Res 52:5575–5589

    CAS  PubMed  Google Scholar 

  • Martel-Pelletier J, Lajeunesse D, Reboul P, Pelletier JP (2003) Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis 62:501–509

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martinez ME, McPherson RS, Levin B, Annegers JF (1995) Aspirin and other non-steroidal anti-inflammatory drugs and risk of colorectal adenomatous polyps among endoscoped individuals. Cancer Epidemiol Biomarkers Prev 4:703–707

    CAS  PubMed  Google Scholar 

  • McAnuff MA, Harding WW, Omoruyi FO, Jacobs H, Morrison EY, Asemota HN (2005) Hypoglycemic effects of steroidal sapogenins isolated from Jamaican bitter yam, Dioscorea polygonoides. Food Chem Toxicol 43(11):1667–1672

    CAS  PubMed  Google Scholar 

  • Meira LB, Bugni JM, Green SL et al (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 118:2516–2525

    CAS  PubMed Central  PubMed  Google Scholar 

  • Metzger U, Meier J, Uhlschmid G, Weihe H (1984) Influence of various prostglandin synthesis inhibitors on DMH-induced rat colon cancer. Dis Colon Rectum 27:366–369

    CAS  PubMed  Google Scholar 

  • Mohammed A, Janakiram NB, Li Q, Choi CI, Zhang Y, Steele VE, Rao CV (2011) Chemoprevention of colon and small intestinal tumorigenesis in APCMin/+ Mice by licofelone, a novel dual 5-LOX/COX inhibitor: potential implications for human colon cancer prevention. Cancer Prev Res 4(12):2015–2026

    CAS  Google Scholar 

  • Moorghen M, Ince P, Finney KJ, Sunter JP, Appleton DR, Watson AJA (1988) A protective effect of sulindac against chemically—induced primary colonic tumors in mice. J Pathol 156:341–347

    CAS  PubMed  Google Scholar 

  • Moorghen M, Orde M, Finney KJ, Appleton DR, Watson AJ (1998) Sulindac enhances cell proliferation in DMH-treated mouse colonic mucosa. Cell Prolif 31:59–70

    CAS  PubMed  Google Scholar 

  • Moreau M, Daminet S, Martel-Pelletier J, Fernandes J, Pelletier JP (2005) Superiority of the gastroduodenal safety profile of licofelone over rofecoxib, a COX-2 selective inhibitor, in dogs. J Vet Pharmacol Ther 28:81–86

    CAS  PubMed  Google Scholar 

  • Mund RC, Pizato N, Bonatto S, Nunes EA, Vicenzi T, Tanhoffer R, de Oliveira HH, Curi R, Calder PC, Fernandes LC (2007) Decreased tumor growth in Walker 256 tumor-bearing rats chronically supplemented with fish oil involves COX-2 and PGE2 reduction associated with apoptosis and increased peroxidation. Prostaglandins Leukot Essent Fatty Acids 76(2):113–120

    CAS  PubMed  Google Scholar 

  • Murata T, Lin MI, Aritake K et al (2008) Role of prostaglandin D2 receptor DP as a suppressor of tumor hyper-permeability and angiogenesis in vivo. Proc Natl Acad Sci 105(50):20009–20014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muscat JE, Stellman SD, Wynder EL (1994) Non-steroidal anti-inflammatory drugs and colorectal cancer. Cancer 74:1847–1854

    CAS  PubMed  Google Scholar 

  • Nalini N, Manju V, Menon VP (2006) Effect of spices on lipid metabolism in 1, 2-dimethylhydrazine-induced rat colon carcinogenesis. J Med Food 9(2):237–245

    CAS  PubMed  Google Scholar 

  • Nam KT, Oh SY, Ahn B, Kim YB, Jang DD, Yang KH et al (2004) Decreased Helicobacter pylori associated gastric carcinogenesis in mice lacking inducible nitric oxide synthase. Gut 20(53):1250–1255

    Google Scholar 

  • Narisawa T, Satoh M, Sano M, Takahashi T (1993) Inhibition of initiation and promotionon N-methylnitrosourea-inducedcolon carcinogenesisin rats by nonsteroidal anti-inflammatory agent indomethacin. Carcinogenesis (London) 14:1493–1497

    Google Scholar 

  • Narisawa T et al (1981) Inhibition of development of methylnitrosourea-induced rat colon tumors by indomethacin treatment. Cancer Res 41:1954–1957

    CAS  PubMed  Google Scholar 

  • Nguyen AV, Martinez M, Stamos MJ, Moyer MP, Planutis K, Hope C, Holcombe RF (2009) Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag Res 1:25–37

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nieto N, Torres MI, Ríos A, Gil A (2002) Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis. J Nutr 132:11–19

    CAS  PubMed  Google Scholar 

  • Nussmeier NA et al (2005) Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N Engl J Med 352:1081–1091

    CAS  PubMed  Google Scholar 

  • Oh SF, Vickery TW, Serhan CN (2011) Chiral lipidomics of E-series resolvins: aspirin and the biosynthesis of novel mediators. Biochim Biophys Acta 1811(11):737–747

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohd JF, Nielsen CK, Campbell J, Landberg G, Lofberg H, Sjolander A (2003) Expression of the leukotriene D4 receptor CysLT1, COX-2, colorectal adenocarcinomas. Gastroenterology 124:57–70

    CAS  PubMed  Google Scholar 

  • Ohshima H, Bartsch H (1994) Chronic infection and inflammatory processes as cancer risk factors: possible role of NO in carcinogenesis. Mutat Res 305:253–264

    CAS  PubMed  Google Scholar 

  • Orner GA, Dashwood WM, Blum CA, Daz GD, Li Q, Dashwood RH (2003) Suppression of tumorigenesis in the Apc(Min) mouse: down-regulation of b-catenin signaling by a combination of tea plus sulindac. Carcinogenesis 24:263–267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oshima M, Dinchuk JE, Kargman SL, Oshima H, Hancock B, Kwong E, Trzaskos JM, Evans JF, Taketo MM (1996a) Suppression of intestinal polyposis in Apc delta 716 knockout mice by inhibition of cyclooxygenase 2 (COX-2). Cell 87(5):803–809

    CAS  PubMed  Google Scholar 

  • Oshima M, Dinchuk JE, Kargman SL (1996b) Suppression of intestinal polyposis in APCΔ716 knockout mice by inhibition of cyclooxygenase-2 (COX-2). Cell 87:803–809

    CAS  PubMed  Google Scholar 

  • Oshima M, Murai N, Kargman S et al (2001) Chemoprevention of intestinal polyposis in the APCΔ716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res 61:1733–1740

    CAS  PubMed  Google Scholar 

  • Patel KR, Brown VA, Jones DJ, Britton RG, Hemingway D, Miller AS, West KP, Booth TD, Perloff M, Crowell JA (2010) Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 70:7392–7399

    CAS  PubMed Central  PubMed  Google Scholar 

  • Peleg II, Maibach HT, Brown SH, Wilcox CM (1994) Aspirin and non-steroidal anti-inflammatory drug use and the risk of subsequent colorectal cancer. Arch Intern Med 154:394–399

    CAS  PubMed  Google Scholar 

  • Piyachaturawat P, Glinsukon T, Toskulkao C (1983) Acute and subacute toxicity of piperine in mice, rats and hamsters. Toxicol Lett 16(3–4):351–359

    CAS  PubMed  Google Scholar 

  • Pizato N, Bonatto S, Yamazaki RK, Aikawa J, Nogata C, Mund RC, Nunes EA, Piconcelli M, Naliwaiko K, Curi R, Calder PC, Fernandes LC (2005) Ratio of n6 to n-3 fatty acids in the diet affects tumor growth and cachexia in Walker 256 tumor-bearing rats. Nutr Cancer 53(2):194–201

    CAS  PubMed  Google Scholar 

  • Pollard M, Luckert PH (1980) Indomethacin treatment of rats with dimethylhydrazine-induced intestinal tumors. Cancer Treat Rep 64:1323–1327

    CAS  PubMed  Google Scholar 

  • Pollard M, Luckert PH (1984) Effect of piroxicam on primary intestinal tumors induced in rats by N-methylnitrosourea. Cancer Left 25:117–121

    CAS  Google Scholar 

  • Pollard M, Luckert PH (1981) Treatment of chemically-induced intestinal cancers with indomethacin. Proc Soc Exp Biol Med 167:161–164

    CAS  PubMed  Google Scholar 

  • Qiao L, Kozoni V, Tsioulias GJ, Koutsos MI, Hanif R, Shiff SJ et al (1995) Selected eicosanoids increase the proliferation rate of human colon carcinoma cell lines and mouse colonocytes in vivo. Biochim et Biophys Acta 1258:215–223

    Google Scholar 

  • Rachmilewitz D, Stamler JS, Bachwich D, Karmeli F, Ackerman Z, Podolsky DK (1995) Enhanced colonic nitric oxide generation and nitric oxide synthase activity in ulcerative colitis and Crohn’s disease. Gut 36:718–723

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raju J, Mehta R (2009) Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr Cancer 61(1):27–35

    CAS  PubMed  Google Scholar 

  • Raju J, Patlolla JM, Swamy MV, Rao CV (2004) Diosgenin, a steroid saponin of Trigonella foenum graecum (Fenugreek), inhibits azoxymethane-induced aberrant crypt foci formation in F344 rats and induces apoptosis in HT-29 human colon cancer cells. Cancer Epidemiol Biomarkers Prev 13(8):1392–1398

    CAS  PubMed  Google Scholar 

  • Rao CV (2004) Nitric Oxide signaling in colon cancer chemoprevention. Mut Res 555:107–119

    CAS  Google Scholar 

  • Rao CV, Cooma I, Rodriguez JG, Simi B, El-Bayoumy K, Reddy BS (2000) Chemoprevention of familial adenomatous polyposis development in the APC(min) mouse model by 1, 4-phenylene bis(methylene) selenocyanate. Carcinogenesis 21:617–621

    CAS  PubMed  Google Scholar 

  • Rao CV, Cooma I, Simi B, Manning PT, Connor JR, Reddy BS (2002) Chemopreventive properties of a selective inducible nitric oxide synthase inhibitor in colon carcinogenesis, administered alone or in combination with celecoxib, a selective cyclooxygenase-2 inhibitor. Cancer Res 62:165–170

    CAS  PubMed  Google Scholar 

  • Rao CV, Kawamori T, Hamid R, Reddy BS (1999) Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase—selective inhibitor. Carcinogenesis 20:641–644

    CAS  PubMed  Google Scholar 

  • Rao CV, Reddy BS, Steele VE, Wang CX, Liu X, Ouyang N, Patlolla JM, Simi B, Kopelovich L, Rigas B (2006) Nitric oxide-releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: effects on molecular targets. Mol Cancer Ther 6:1530–1538

    Google Scholar 

  • Rao CV, Reddy BS (2004) NSAIDs and chemoprevention. Curr Cancer Drug Targets 4:29–42

    CAS  PubMed  Google Scholar 

  • Rao CV, Rivenson A, Simi B, Zang E, Kelloff G, Steele V, Reddy BS (1995) Chemoprevention of colon carcinogenesis by sulindac, a nonsteroidal anti-inflammatory agent. Cancer Res 55:1464–1472

    CAS  PubMed  Google Scholar 

  • Reddy BS, Maruyama H, Kelloff G (1987) Dose-related inhibition of colon carcinogenesis by dietary piroxicam, a nonsteroidal anti-inflammatory drug, during different stages of rat colon tumor development. Cancer Res 47:5340–5346

    CAS  PubMed  Google Scholar 

  • Reddy BS, Rao CV, Rivenson A, Kelloff G (1993) Inhibitory effect of aspirin on azoxymethane-induced colon carcinogenesis in F344 rats. Carcinogenesis (London) 14:1493–1497

    CAS  Google Scholar 

  • Reddy BS, Rao CV (2002) Novel approaches for colon cancer prevention by COX-2 inhibitors. J Environ Pathol Toxicol Oncol 21:155–164

    CAS  PubMed  Google Scholar 

  • Rigau J, Pique JM, Rubio E, Planas R, Tarrech JM, Bordas JM (1991) Effect of long-term sulindac therapy on colonic polyposis. Ann Intern Med 115:952–954

    CAS  PubMed  Google Scholar 

  • Sale S, Tunstall RG, Ruparelia KC, Potter GA, Steward WP, Gescher AJ (2005) Comparison of the effects of the chemopreventive agent resveratrol and its synthetic analog trans 3, 4, 5, 4′-tetramethoxystilbene (DMU-212) on adenoma development in the Apc(Min+) mouse and cyclooxygenase-2 in human-derived colon cancer cells. Int J Cancer 115(2):194–201

    CAS  PubMed  Google Scholar 

  • Sandler RS et al (2003) A randomized trial of aspirin to prevent colorectal adenomas in patients with previous colorectal cancer. N Engl J Med 348:883–890

    CAS  PubMed  Google Scholar 

  • Schleiffer R, Duranton B, Gossé F, Bergmann C, Raul F (2000) Nitric oxide synthase inhibition promotes carcinogen-induced preneoplastic changes in the colon of rats. Nitric Oxide 4(6):583–589

    CAS  PubMed  Google Scholar 

  • Schneider Y, Duranton B, Gossé F, Schleiffer R, Seiler N, Raul F (2001) Resveratrol inhibits intestinal tumorigenesis and modulates host-defense-related gene expression in an animal model of human familial adenomatous polyposis. Nutr Cancer 39(1):102–107

    CAS  PubMed  Google Scholar 

  • Schreinemachers DM, Everson RB (1994) Aspirin use and lung, colon, and breast cancer incidence in a prospective study. Epidemiology 5:138–146

    CAS  PubMed  Google Scholar 

  • Sengottuvelan M, Nalini N (2006) Dietary supplementation of resveratrol suppresses colonic tumour incidence in 1, 2-dimethylhydrazine-treated rats by modulating biotransforming enzymes and aberrant crypt foci development. Br J Nutr 96(1):145–153

    CAS  PubMed  Google Scholar 

  • Serhan CN (1997) Lipoxins and novel aspirin-triggered 15-epi-lipoxins (ATL). Prostaglandins 53:107–137

    CAS  PubMed  Google Scholar 

  • Serhan CN (2002) Lipoxins and aspirin-triggered 15-epilipoxin biosynthesis: an update and role in anti-inflammation and pro-resolution. Prostaglandins Other Lipid Mediat 68–69:4333–4455

    Google Scholar 

  • Sharma RA, Euden SA, Platton SL, Cooke DN, Shafayat A, Hewitt HR, Marczylo TH, Morgan B, Hemingway D, Plummer SM, Pirmohamed M, Gescher AJ, Steward WP (2004) Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 10(20):6847–6854

    CAS  PubMed  Google Scholar 

  • Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM, Pirmohamed M, Marnett LJ, Gescher AJ, Steward WP (2001) Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res 7:1894–1900

    CAS  PubMed  Google Scholar 

  • Shpitz B, Giladi N, Sagiv E, Lev-Ari S, Liberman E, Kazanov D, Arber N (2006) Celecoxib and curcumin additively inhibit the growth of colorectal cancer in a rat model. Digestion 74(3–4):140–144

    CAS  PubMed  Google Scholar 

  • Silverstein FE et al (2000) Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib long-term arthritis safety study. JAMA 284:1247–1255

    CAS  PubMed  Google Scholar 

  • Skinner SA, Penney AG, O’Brien PE (1991) Sulindac inhibits the rate of growth and appearance of colon tumor in the rat Arch Surg 126:1094–1096

    Google Scholar 

  • Smalley WE, DuBois RN (1997) Colorectal cancer and nonsteroidal anti-inflammatory drugs. Adv Pharmacol 39:1–20

    CAS  PubMed  Google Scholar 

  • Smith WL, DeWitt DL, Garavito RM (2000) Cyclooxygenases: structural, cellular, and molecular biology. Ann Rev Biochem 69:145–182

    CAS  PubMed  Google Scholar 

  • Smith WL (1992) Prostanoid biosynthesis and mechanisms of action. Am J Physiol 263:F181–F191

    CAS  PubMed  Google Scholar 

  • Solomon SD et al (2005) Cardiovascular risk associated with celecoxib in a clinical trial for colorectal adenoma prevention. N Engl J Med 352:1071–1080

    CAS  PubMed  Google Scholar 

  • Son IS, Kim JH, Sohn HY, Son KH, Kim JS, Kwon CS (2007) Antioxidative and hypolipidemic effects of diosgenin, a steroidal saponin of yam (Dioscorea spp.), on high-cholesterol fed rats. Biosci Biotechnol Biochem 71(12):3063–3071

    CAS  PubMed  Google Scholar 

  • Spagnesi MT, Tonelli F, Dolara P, Caderni G, Valanzano R, Anastasi A, Bianchini F (1994) Rectal proliferation and polyp occurrence in patients with familial adenomatous polyposis after sulindac treatment. Gastroenterology 106:362–366

    CAS  PubMed  Google Scholar 

  • Suh N, Reddy BS, DeCastro A, Paul S, Lee HJ, Smolarek AK, So JY, Simi B, Wang CX, Janakiram NB, Steele V, Rao CV (2011) Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/b-catenin/cyclin D1 signaling pathway in rats. Cancer Prev Res 4:1895–1902

    CAS  Google Scholar 

  • Suh O, Mettlin C, Petrelli NJ (1993) Aspirin use, cancer, and polyps of the large bowel. Cancer 72:1171–1177

    CAS  PubMed  Google Scholar 

  • Swamy MV, Patlolla JM, Steele VE, Kopelovich L, Reddy BS, Rao CV (2006) Chemoprevention of familial adenomatous polyposis by low doses of atorvastatin and celecoxib given individually and in combination to APCMin mice. Cancer Res 66:7370–7377

    CAS  PubMed  Google Scholar 

  • Szaleczky E, Pronai L, Nakazawa H, Tulassay Z (2000) Evidence of in vivo peroxynitrite formation in patients with colorectal carcinoma, higher plasma nitrate/nitrite levels, and lower protection against oxygen free radicals. J Clin Gastroenterol 30:47–51

    CAS  PubMed  Google Scholar 

  • Tamir S, Tannenbaus SR (1996) The role of nitric oxide in carcinogenic process. Biochim Biophys Acta 1288:F31–F36

    PubMed  Google Scholar 

  • Tenesa A, Dunlop MG (2009) New insights into the aetiology of colorectal cancer from genome-wide association studies. Nat Rev Genet 10:353–358

    CAS  PubMed  Google Scholar 

  • Tessitore L, Davit A, Sarotto I, Caderni G (2000) Resveratrol depresses the growth of colorectal aberrant crypt foci by affecting bax and p21 (CIP) expression. Carcinogenesis 21(8):1619–1622

    CAS  PubMed  Google Scholar 

  • Thun MH, Namboodiri MM, Heath CW (1991) Aspirin use and reduced risk of fatal colon cancer. N Eng J Med 325:1593–1596

    CAS  Google Scholar 

  • Togni V, Ota CC, Folador A, Júnior OT, Aikawa J, Yamazaki RK, Freitas FA, Longo R, Martins EF, Calder PC, Curi R, Fernandes LC (2003) Cancer cachexia and tumor growth reduction in Walker 256 tumor-bearing rats supplemented with N-3 polyunsaturated fatty acids for one generation. Nutr Cancer 46(1):52–58

    CAS  PubMed  Google Scholar 

  • Tong WG, Ding XZ, Talamonti MS, Bell RH, Adrian TE (2005) LTB4 stimulates growth of human pancreatic cancer cells via MAPK and PI-3 kinase pathways. Biochem Biophys Res Commun 335:949–956

    CAS  PubMed  Google Scholar 

  • Trebino CE, Stock JL, Gibbons CP, Naiman BM, Wachtmann TS, Umland JP, Pandher K, Lapointe JM, Saha S, Roach ML, Carter D, Thomas NA, Durtschi BA, McNeish JD, Hambor JE, Jakobsson PJ, Carty TJ, Perez JR, Audoly LP (2003) Impaired inflammatory and pain responses in mice lacking an inducible prostaglandin E synthase. Proc Natl Acad Sci USA 100:9044–9049

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ukil A, Maity S, Karmakar S, Datta N, Vedasiromoni JR, Das PK (2003) Curcumin, the major component of food flavour turmeric, reduces mucosal injury in trinitrobenzene sulphonic acid-induced colitis. Br J Pharmacol 139:209–218

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanamala J, Glagolenko A, Yang P, Carroll RJ, Murphy ME, Newman RA, Ford JR, Braby LA, Chapkin RS, Turner ND, Lupton JR (2008) Dietary fish oil and pectin enhance colonocyte apoptosis in part through suppression of PPAR delta/PGE2 and elevation of PGE3. Carcinogenesis 29(4):790–796

    CAS  PubMed Central  PubMed  Google Scholar 

  • Velayos FS, Loftus EV, Jess T, Harmsen WS, Bida J, Zinsmeister AR, Tremaine WJ, Sandborn WJ (2006) Predictive and protective factors associated with colorectal cancer in ulcerative colitis: a case-control study. Gastroenterol 130:1941–1949

    Google Scholar 

  • Waddel RW, Ganser GF, Cerise EJ, Loughry RW (1989) Sulindac for polyposis of the colon. Am J Surg 157:175–179

    Google Scholar 

  • Waldner MJ, Neurath MF (2008) Cytokines in colitis associated cancer: potential drug targets? Inflamm Allergy Drug Targets 7:187–194

    CAS  PubMed  Google Scholar 

  • Walle T (2011) Bioavailability of resveratrol. Ann NY Acad Sci 1215:9–15

    CAS  PubMed  Google Scholar 

  • Wan G, Kato N, Watanabe H (2000) High fat diet elevates the activity of inducible nitric oxide synthase and 1, 2 dimethyl-hydrazine induced aberrant crypt foci in colon of rats. Oncolo Rep 7:391–395

    CAS  Google Scholar 

  • Wang D, Dubois RN (2006) Review prostaglandins and cancer. Gut 55(1):115–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • West NJ, Clark SK, Phillips RKS, Hutchinson JM, Leicester RJ, Belluzzi A, Hull MA (2010) Eicosapentaenoic acid reduces rectal polyp number and size in familial adenomatous polyposis. Gut. doi:10.1136/gut.2009.200642

  • Westbrook AM, Wei B, Braun J, Schiestl RH (2009) Intestinal mucosal inflammation leads to systemic genotoxicity in mice. Cancer Res 69:4827–4834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Winde G, Gumbinger HG, Osswald H, Kemper F, Bunte H (1993) The NSAID sulindac reverses rectal adenomas in colectomized patients with familial adenomatous polyposis: clinical results of a dose finding study on rectal sulindac administration. Int J Colorect Dis 8:13–17

    CAS  Google Scholar 

  • Xu G, Ren G, Xu X, Yuan H, Wang Z, Kang L, Yu W, Tian K (2010) Combination of curcumin and green tea catechins prevents dimethylhydrazine-induced colon carcinogenesis. Food Chem Toxicol 48(1):390–395. doi:10.1016/j.fct.2009.10.027. Epub 25 Oct 2009

  • Xu W, Liu L, Charles IG (2002) Microencapsulated iNOS-expressing cells cause tumor suppression in mice. FASEB J 16:213–215

    CAS  PubMed  Google Scholar 

  • Yagihashi N, Kasajima H, Sugai S et al (2000) Increased in situ expression of nitric oxide synthase in human colorectal cancer. Virchows Arch 436:109–114

    CAS  PubMed  Google Scholar 

  • Yamada T, Hoshino M, Hayakawa T, Ohhara H, Yamada H, Nakazawa T, Inagaki T, Iida M, Ogasawara T, Uchida A, Hasegawa C, Murasaki G, Miyaji M, Hirata A, Takeuchi T (1997) Dietary diosgenin attenuates subacute intestinal inflammation associated with indomethacin in rats. Am J Physiol 273(2):G355–G364

    CAS  PubMed  Google Scholar 

  • Ziegler CC, Rainwater L, Whelan J, McEntee MF (2004) Dietary resveratrol does not affect intestinal tumorigenesis in Apc(Min/+) mice. J Nutr 134(1):5–10

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We want to acknowledge the Grant support NCI-R01-94962; NCI-CN-53300 for the work quoted in this chapter and Dr. Julie Sando for her scientific and language editing of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Naveena B. Janakiram or Chinthalapally V. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this chapter

Cite this chapter

Janakiram, N.B., Rao, C.V. (2014). The Role of Inflammation in Colon Cancer. In: Aggarwal, B., Sung, B., Gupta, S. (eds) Inflammation and Cancer. Advances in Experimental Medicine and Biology, vol 816. Springer, Basel. https://doi.org/10.1007/978-3-0348-0837-8_2

Download citation

Publish with us

Policies and ethics