Skip to main content

Shape Dynamics. An Introduction

  • Chapter
  • First Online:
Quantum Field Theory and Gravity

Abstract

Shape dynamics is a completely background-independent universal framework of dynamical theories from which all absolute elements have been eliminated. For particles, only the variables that describe the shapes of the instantaneous particle configurations are dynamical. In the case of Riemannian three-geometries, the only dynamical variables are the parts of the metric that determine angles. The local scale factor plays no role. This leads to a shape-dynamic theory of gravity in which the four-dimensional diffeomorphism invariance of general relativity is replaced by three-dimensional diffeomorphism invariance and three-dimensional conformal invariance. Despite this difference of symmetry groups, it is remarkable that the predictions of the two theories – shape dynamics and general relativity – agree on spacetime foliations by hypersurfaces of constant mean extrinsic curvature. However, the two theories are distinct, with shape dynamics having a much more restrictive set of solutions. There are indications that the symmetry group of shape dynamics makes it more amenable to quantization and thus to the creation of quantum gravity. This introduction presents in simple terms the arguments for shape dynamics, its implementation techniques, and a survey of existing results.

Mathematics Subject Classification (2010). 70G75, 70H45, 83C05, 83C45.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. E Mach. Die Mechanik in ihrer Entwickelung historisch-kritisch dargestellt. 1883.

    Google Scholar 

  2. E Mach. The Science of Mechanics. Open Court, 1960.

    Google Scholar 

  3. A Einstein. Prinzipielles zur allgemeinen Relativitätstheorie. Annalen der Physik, 55:241–244, 1918.

    Article  MATH  Google Scholar 

  4. A Einstein. Dialog über Einwände gegen die Relativitätstheorie. Die Naturwissenschaften, 6:697–702, 1918.

    Article  Google Scholar 

  5. J Barbour and H Pfister, editors. Mach’s Principle: From Newton’s Bucket to Quantum Gravity, volume 6 of Einstein Studies. Birkhäuser, Boston, 1995.

    Google Scholar 

  6. J Barbour. Absolute or Relative Motion? Volume 1. The Discovery of Dynamics. Cambridge University Press, 1989.

    Google Scholar 

  7. J Barbour. The Discovery of Dynamics. Oxford University Press, 2001.

    Google Scholar 

  8. I Newton. Sir Isaac Newton’s Mathematical Principles of Natural Philosophy. University of California Press, 1962.

    Google Scholar 

  9. H Gomes, S Gryb, and T Koslowski. Einstein gravity as a 3D conformally invariant theory (arXiv:1010.2481). Class. Quant. Grav., 28:045005, 2011.

    Google Scholar 

  10. H Gomes and T Koslowski. The link between general relativity and shape dynamics. arXiv:1101.5974.

    Google Scholar 

  11. J Barbour and B Bertotti. Mach’s principle and the structure of dynamical theories (downloadable from platonia.com). Proceedings of the Royal Society London A, 382:295–306, 1982.

    Google Scholar 

  12. J Barbour. Scale-invariant gravity: particle dynamics. Class. Quantum Grav., 20:1543–1570, 2003, gr-qc/0211021.

    Google Scholar 

  13. D Saari. Collisions, Rings, and Other Newtonian N-Body Problems. American Mathematical Society, Providence, Rhode Island, 2005.

    Google Scholar 

  14. H Poincaré. Science et Hypothèse. Paris, 1902.

    Google Scholar 

  15. H Poincaré. Science and Hypothesis. Walter Scott, London, 1905.

    Google Scholar 

  16. J Barbour. The definition of Mach’s principle (arXiv:1007.3368). Found. Phys., 40:1263–1284, 2010.

    Google Scholar 

  17. C Lanczos. The Variational Principles of Mechanics. University of Toronto Press, 1949.

    Google Scholar 

  18. P A M Dirac. Lectures on Quantum Mechanics. Belfer Graduate School of Science, Yeshiva University, New York, 1964.

    Google Scholar 

  19. H Weyl. Gravitation und Elektrizität. Sitzungsber. Preuss. Akad. Berlin, pages 465–480, 1918.

    Google Scholar 

  20. H Weyl. Gravitation and electricity. In Ó Raifeartaigh, editor, The dawning of gauge theory, pages 24–37. Princeton University Press, 1997.

    Google Scholar 

  21. P A M Dirac. Generalized Hamiltonian dynamics. Proc. R. Soc. (London), A246:326–343, 1958.

    Google Scholar 

  22. R Arnowitt, S Deser, and C W Misner. The dynamics of general relativity. In L Witten, editor, Gravitation: An Introduction to Current Research, pages 227–265. Wiley, New York, 1962.

    Google Scholar 

  23. B F Schutz. Geometrical Methods of Mathematical Physics. Cambridge University Press, Cambridge, 1980.

    Google Scholar 

  24. C W Misner, K S Thorne, and J A Wheeler. Gravitation. W H Freeman and Company, San Francisco, 1973.

    Google Scholar 

  25. K Kuchař. Time and interpretations of quantum gravity. In G Kunstatter, D Vincent, and J Williams, editors, Proceedings 4th Canadian Conf. General Relativity and Relativistic Astrophysics, pages 211–314. World Scientific, Singapore, 1992.

    Google Scholar 

  26. C J Isham. Canonical quantum gravity and the problem of time. In L A Ibort and M A Rodríguez, editors, Integrable Systems, Quantum Groups, and Quantum Field Theory, pages 157–287. Kluwer, Dordrecht, 1993.

    Google Scholar 

  27. J Barbour. The End of Time. Weidenfeld and Nicolson, London; Oxford University Press, New York, 1999.

    Google Scholar 

  28. J Barbour, B Z Foster, and N Ó Murchadha. Relativity without relativity. Class. Quantum Grav., 19:3217–3248, 2002, gr-qc/0012089.

    Google Scholar 

  29. E Anderson. On the recovery of geometrodynamics from two different sets of first principles. Stud. Hist. Philos. Mod. Phys., 38:15, 2007. arXiv:grqc/ 0511070.

    Google Scholar 

  30. E Anderson. Does relationalism alone control geometrodynamics with sources? 2007. arXiv:0711.0285.

    Google Scholar 

  31. R Baierlein, D Sharp, and J Wheeler. Three-dimensional geometry as a carrier of information about time. Phys. Rev., 126:1864–1865, 1962.

    Google Scholar 

  32. E Anderson and J Barbour. Interacting vector fields in relativity without relativity. Class. Quantum Grav., 19:3249–3262, 2002, gr-qc/0201092.

    Google Scholar 

  33. A Einstein. Zur Elektrodynamik bewegter Körper. Ann. Phys., 17:891–921, 1905.

    Google Scholar 

  34. H Poincaré. La mesure du temps. Rev. Métaphys. Morale, 6:1, 1898.

    Google Scholar 

  35. H Poincaré. The measure of time. In The Value of Science. 1904.

    Google Scholar 

  36. A Einstein. Autobiographical notes. In P Schilpp, editor, Albert Einstein: Philosopher–Scientist. Harper and Row, New York, 1949.

    Google Scholar 

  37. H Weyl. Symmetry. Princeton University Press, 1952.

    Google Scholar 

  38. J Barbour and N Ó Murchadha. Classical and quantum gravity on conformal superspace. 1999, gr-qc/9911071.

    Google Scholar 

  39. E Anderson, J Barbour, B Z Foster, and N Ó Murchadha. Scale-invariant gravity: geometrodynamics. Class. Quantum Grav., 20:1571, 2003, gr-qc/0211022.

    Google Scholar 

  40. E Anderson, J Barbour, B Z Foster, B Kelleher, and N Ó Murchadha. The physical gravitational degrees of freedom. Class. Quantum Grav., 22:1795–1802, 2005, gr-qc/0407104.

    Google Scholar 

  41. J Barbour and N Ó Murchadha. Conformal Superspace: the configuration space of general relativity, arXiv:1009.3559.

    Google Scholar 

  42. A Einstein. The Meaning of Relativity. Methuen and Co Ltd, London, 1922.

    Google Scholar 

  43. J W York. Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Letters, 26:1656–1658, 1971.

    Article  MathSciNet  Google Scholar 

  44. J W York. The role of conformal 3-geometry in the dynamics of gravitation. Phys. Rev. Letters, 28:1082–1085, 1972.

    Article  Google Scholar 

  45. J Isenberg, N Ó Murchadha, and J W York. Initial-value problem of general relativity. III. Phys. Rev. D, 12:1532–1537, 1976.

    Article  Google Scholar 

  46. J Isenberg and J Nester. Extension of the York field decomposition to general gravitationally coupled fields. Ann. Phys., 108:368–386, 1977.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian Barbour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Basel AG

About this chapter

Cite this chapter

Barbour, J. (2012). Shape Dynamics. An Introduction. In: Finster, F., Müller, O., Nardmann, M., Tolksdorf, J., Zeidler, E. (eds) Quantum Field Theory and Gravity. Springer, Basel. https://doi.org/10.1007/978-3-0348-0043-3_13

Download citation

Publish with us

Policies and ethics