Skip to main content

C6 Immunostimulants in cancer therapy

  • Chapter
  • First Online:
Book cover Principles of Immunopharmacology
  • 1865 Accesses

Abstract

Immunoaugmenting agents have been used to treat disease since William B. Coley treated cancer patients with mixed bacterial toxins early in the 20th century [1]. These early studies spawned the clinical use of such microbially derived substances as Bacille Calmette-Guerin (BCG) (bladder cancer, USA), krestin, picibanil and lentinan (gastric and other cancers, Japan), and Biostim and Broncho-Vaxom (recurrent infections, Europe). While these “crude” drugs induce numerous immunopharmacological activities, they pose considerable regulatory obstacles due to impurity, lot-to-lot variability, unreliability and adverse side effects. Similarly, traditional herbal medicines (Asia) also provide a source of active substances for IMMUNOTHERAPY.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2001; 2: 293–9

    Article  PubMed  CAS  Google Scholar 

  2. Giezen TJ, Mantel-Teeuwisse AK, Straus SMJM, Schellekens H, Leufkens HGM, Egberts ACG. Safety-related regulatory actions for biologicals approved in the United States and the European Union. JAMA 2008; 300: 1887–96

    Article  PubMed  CAS  Google Scholar 

  3. Battelle Memorial Institute. Technology Talent and Capital: State Bioscience Initiatives. 2008. 1–1–2008

    Google Scholar 

  4. Schellekens H, Moors E. Clinical comparability and European biosimilar regulations. Nat Biotechnol 2010; 28: 28–31

    Article  PubMed  CAS  Google Scholar 

  5. Ko JS, Zea AH, Rini BI, Ireland JL, Elson P, Cohen P et al. Sunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patients. Clin Cancer Res 2009; 15: 2148–57

    Article  PubMed  CAS  Google Scholar 

  6. Talmadge JE, Herberman RB. The preclinical screening laboratory: evaluation of immunomodulatory and therapeutic properties of biological response modifiers. Cancer Treat Rep 1986; 70: 171–82

    PubMed  CAS  Google Scholar 

  7. Mihich E. Future perspectives for biological response modifiers: a viewpoint. Semin Oncol 1986; 13: 234–54

    PubMed  CAS  Google Scholar 

  8. Ellenberg SS. Surrogate endpoints. Br J Cancer 1993; 68: 457–9

    Article  PubMed  CAS  Google Scholar 

  9. Holden C. Okays surrogate markers. Science 1993; 259: 32

    Google Scholar 

  10. Misset JL, Mathe G, Gastiaburu J, Goutner A, Dorval T, Gouveia J et al. [Treatment of leukemias and lymphomas by interferons: II. Phase II of the trial treatment of chronic lymphoid leukemia by human interferon alpha+]. Biomed Pharmacother 1982; 36: 112–6

    PubMed  CAS  Google Scholar 

  11. Golomb HM, Fefer A, Golde DW, Ozer H, Portlock C, Silber R et al. Report of a multi-institutional study of 193 patients with hairy cell leukemia treated with interferon-alfa2b. Semin Oncol 1988; 15: 7–9

    PubMed  CAS  Google Scholar 

  12. Quesada JR, Reuben J, Manning JT, Hersh EM, Gutterman JU. Alpha interferon for induction of remission in hairy-cell leukemia. N Engl J Med 1984; 310: 15–8

    Article  PubMed  CAS  Google Scholar 

  13. O’Connell MJ, Colgan JP, Oken MM, Ritts RE, Jr., Kay NE, Itri LM. Clinical trial of recombinant leukocyte A interferon as initial therapy for favorable histology non-Hodgkin’s lymphomas and chronic lymphocytic leukemia. An Eastern Cooperative Oncology Group pilot study. J Clin Oncol 1986; 4: 128–36

    Google Scholar 

  14. Bunn PA Jr, Foon KA, Ihde DC, Longo DL, Eddy J, Winkler CF et al. Recombinant leukocyte A interferon: an active agent in advanced cutaneous T-cell lymphomas. Ann Intern Med 1984; 101: 484–7

    PubMed  Google Scholar 

  15. Kirkwood JM, Strawderman MH, Ernstoff MS, Smith TJ, Borden EC, Blum RH. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol 1996; 14: 7–17

    PubMed  CAS  Google Scholar 

  16. Lane HC, Kovacs JA, Feinberg J, Herpin B, Davey V, Walker R et al. Anti-retroviral effects of interferon-alpha in AIDS-associated Kaposi’s sarcoma. Lancet 1988; 2: 1218–22

    Article  PubMed  CAS  Google Scholar 

  17. Pfeffer LM, Dinarello CA, Herberman RB, Williams BR, Borden EC, Bordens R et al. Biological properties of recombinant alpha-interferons: 40th anniversary of the discovery of interferons. Cancer Res 1998; 58: 2489–99

    PubMed  CAS  Google Scholar 

  18. Teichmann JV, Sieber G, Ludwig WD, Ruehl H. Modulation of immune functions by long-term treatment with recombinant interferon-alpha 2 in a patient with hairycell leukemia. J Interferon Res 1988; 8: 15–24

    Article  PubMed  CAS  Google Scholar 

  19. Black PL, Phillips H, Tribble HR, Pennington R, Schneider M, Talmadge JE. Antitumor response to recombinant murine interferon gamma correlates with enhanced immune function of organ-associated, but not recirculating cytolytic T lymphocytes and macrophages. Cancer Immunol Immunother 1993; 37: 299–306

    Article  PubMed  CAS  Google Scholar 

  20. The Italian Cooperative Study Group on Chronic Myeloid Leukemia. Interferon alpha-2a as compared with conventional chemotherapy for the treatment of chronic myeloid leukemia. N Engl J Med 1994; 330: 820–5

    Article  Google Scholar 

  21. Alimena G, Morra E, Lazzarino M, Liberati AM, Montefusco E, Inverardi D et al. Interferon alpha-2b as therapy for Ph’-positive chronic myelogenous leukemia: a study of 82 patients treated with intermittent or daily administration. Blood 1988; 72: 642–7

    PubMed  CAS  Google Scholar 

  22. Guilhot F, Chastang C, Michallet M, Guerci A, Harousseau JL, Maloisel F et al. Interferon alfa-2b combined with cytarabine versus interferon alone in chronic myelogenous leukemia. French Chronic Myeloid Leukemia Study Group. N Engl J Med 1997; 337: 223–9

    Google Scholar 

  23. Wadler S, Schwartz EL. Antineoplastic activity of the combination of interferon and cytotoxic agents against experimental and human malignancies: a review. Cancer Res 1990; 50: 3473–86

    PubMed  CAS  Google Scholar 

  24. Wheatley K, Ives N, Hancock B, Gore M, Eggermont A, Suciu S. Does adjuvant interferon-alpha for high-risk melanoma provide a worthwhile benefit? A metaanalysis of the randomised trials. Cancer Treat Rev 2003; 29: 241–52

    Article  PubMed  CAS  Google Scholar 

  25. Kirkwood JM, Richards T, Zarour HM, Sosman J, Ernstoff M, Whiteside TL et al. Immunomodulatory effects of high-dose and low-dose interferon alpha2b in patients with high-risk resected melanoma: the E2690 laboratory corollary of intergroup adjuvant trial E1690. Cancer 2002; 95: 1101–12

    Article  PubMed  CAS  Google Scholar 

  26. Detjen KM, Farwig K, Welzel M, Wiedenmann B, Rosewicz S. Interferon gamma inhibits growth of human pancreatic carcinoma cells via caspase-1 dependent induction of apoptosis. Gut 2001; 49: 251–62

    Article  PubMed  CAS  Google Scholar 

  27. Xu X, Fu XY, Plate J, Chong AS. IFN-gamma induces cell growth inhibition by Fas-mediated apoptosis: requirement of STAT1 protein for up-regulation of Fas and FasL expression. Cancer Res 1998; 58: 2832–7

    PubMed  CAS  Google Scholar 

  28. Folkman J. Angiogenic zip code. Nat Biotechnol 1999; 17: 749

    Article  CAS  Google Scholar 

  29. Luster AD, Ravetch JV. Biochemical characterization of a gamma interferon-inducible cytokine (IP-10). J Exp Med 1987; 166: 1084–97

    Article  PubMed  CAS  Google Scholar 

  30. Key ME, Talmadge JE, Fogler WE, Bucana C, Fidler IJ. Isolation of tumoricidal macrophages from lung melanoma metastases of mice treated systemically with liposomes containing a lipophilic derivative of muramyl dipeptide. J Natl Cancer Inst 1982; 69: 1198

    PubMed  CAS  Google Scholar 

  31. Fogler WE, Talmadge JE, Fidler IJ. The activation of tumoricidal properties in macrophages of endotoxin responder and nonresponder mice by liposomeencapsulated immunomodulators. J Reticuloendothel Soc 1983; 33: 165–74

    PubMed  CAS  Google Scholar 

  32. Singh RK, Varney ML, Buyukberber S, Ino K, Ageitos AG, Reed E et al. Fas-FasL-mediated CD4+ T-cell apoptosis following stem cell transplantation. Cancer Res 1999; 59: 3107–11

    PubMed  CAS  Google Scholar 

  33. Griffith TS, Wiley SR, Kubin MZ, Sedger LM, Maliszewski CR, Fanger NA. Monocyte-mediated tumoricidal activity via the tumor necrosis factor-related cytokine, TRAIL. J Exp Med 1999; 189: 1343–54

    Article  PubMed  CAS  Google Scholar 

  34. Jackson JD, Yan Y, Brunda MJ, Kelsey LS, Talmadge JE. Interleukin-12 enhances peripheral hematopoiesis in vivo. Blood 1995; 85: 2371–6

    PubMed  CAS  Google Scholar 

  35. Smyth MJ, Thia KY, Street SE, MacGregor D, Godfrey DI, Trapani JA. Perforin-mediated cytotoxicity is critical for surveillance of spontaneous lymphoma. J Exp Med 2000; 192: 755–60

    Article  PubMed  CAS  Google Scholar 

  36. Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S et al.. Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 2001; 7: 94–100

    Article  PubMed  CAS  Google Scholar 

  37. Talmadge JE, Tribble HR, Pennington RW, Phillips H, Wiltrout RH. Immunomodulatory and immunotherapeutic properties of recombinant gamma-interferon and recombinant tumor necrosis factor in mice. Cancer Res 1987; 47: 2563–70

    PubMed  CAS  Google Scholar 

  38. Kopp WC, Smith JW, Ewel CH, Alvord WG, Main C, Guyre PM et al. Immunomodulatory effects of interferon- gamma in patients with metastatic malignant melanoma. J Immunother Emphasis Tumor Immunol 1993; 13: 181–90

    PubMed  CAS  Google Scholar 

  39. Maluish AE, Urba WJ, Longo DL, Overton WR, Coggin D, Crisp ER et al. The determination of an immunologically active dose of interferon-gamma in patients with melanoma. J Clin Oncol 1988; 6: 434–45 40 Jaffe HS, Herberman RB. Rationale for recombinant human interferon-gamma adjuvant immunotherapy for cancer. J Natl Cancer Inst 1988; 80: 616–8

    Google Scholar 

  40. The International Chronic Granulomatous Disease Cooperative Study Group. A controlled trial of interferon gamma to prevent infection in chronic granulomatous disease. N Engl J Med 1991; 324: 509–16

    Article  Google Scholar 

  41. Windbichler GH, Hausmaninger H, Stummvoll W, Graf AH, Kainz C, Lahodny J et al. Interferon-gamma in the first-line therapy of ovarian cancer: a randomized phase III trial. Br J Cancer 2000; 82: 1138–44

    Article  PubMed  CAS  Google Scholar 

  42. Raghu G, Brown KK, Bradford WZ, Starko K, Noble PW, Schwartz DA et al. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N Engl J Med 2004; 350: 125–33

    Article  PubMed  CAS  Google Scholar 

  43. Smith KA. Interleukin-2: Inception, impact, and implications. Science 1988; 240: 1169–76

    Article  PubMed  CAS  Google Scholar 

  44. Waldmann TA, Dubois S, Tagaya Y. Contrasting roles of IL-2 and IL-15 in the life and death of lymphocytes: implications for immunotherapy. Immunity 2001; 14: 105–10

    PubMed  CAS  Google Scholar 

  45. Robertson MJ, Ritz J. Biology and clinical relevance of human natural killer cells. Blood 1990; 76: 2421–38

    PubMed  CAS  Google Scholar 

  46. Mingari MC, Gerosa F, Carra G, Accolla RS, Moretta A, Zubler RH et al. Human interleukin-2 promotes proliferation of activated B cells via surface receptors similar to those of activated T cells. Nature 1984; 312: 641–3

    Article  PubMed  CAS  Google Scholar 

  47. Espinoza-Delgado I, Bosco MC, Musso T, Gusella GL, Longo DL, Varesio L. Interleukin-2 and human monocyte activation. J Leukoc Biol 1995; 57: 13–9

    PubMed  CAS  Google Scholar 

  48. Ferrante A. Activation of neutrophils by interleukins-1 and −2 and tumor necrosis factors. Immunol Ser 1992; 57: 417–36

    PubMed  CAS  Google Scholar 

  49. Rosenberg SA. Progress in human tumour immunology and immunotherapy. Nature 2001; 411: 380–4

    Article  PubMed  CAS  Google Scholar 

  50. Moretta A, Bottino C, Vitale M, Pende D, Cantoni C, Mingari MC et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu Rev Immunol 2001; 19: 197–223

    Article  PubMed  CAS  Google Scholar 

  51. Nelson BH. IL-2, Regulatory T Cells, and Tolerance. J Immunol 2004; 172: 3983–8

    PubMed  CAS  Google Scholar 

  52. Gillis S, Smith KA. Long term culture of tumour-specific cytotoxic T cells. Nature 1977; 268: 154–6

    Article  PubMed  CAS  Google Scholar 

  53. Keene JA, Forman J. Helper activity is required for the in vivo generation of cytotoxic T lymphocytes. J Exp Med 1982; 155: 768–82

    Article  PubMed  CAS  Google Scholar 

  54. Andrews DM, Andoniou CE, Granucci F, Ricciardi- Castagnoli P, Degli-Esposti MA. Infection of dendritic cells by murine cytomegalovirus induces functional paralysis. Nat Immunol 2001; 2: 1077–84

    Google Scholar 

  55. Grabstein KH, Eisenman J, Shanebeck K, Rauch C, Srinivasan S, Fung V et al. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin- 2 receptor. Science 1994; 264: 965–8

    Article  PubMed  CAS  Google Scholar 

  56. Marks-Konczalik J, Dubois S, Losi JM, Sabzevari H, Yamada N, Feigenbaum L et al. IL-2-induced activationinduced cell death is inhibited in IL-15 transgenic mice. Proc Natl Acad Sci USA 2000; 97: 11445–50

    Article  PubMed  CAS  Google Scholar 

  57. Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 1998; 8: 591–9

    Article  PubMed  CAS  Google Scholar 

  58. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000; 191: 771–80

    Article  PubMed  CAS  Google Scholar 

  59. Lodolce JP, Boone DL, Chai S, Swain RE, Dassopoulos T, Trettin S et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 1998; 9: 669–76

    Article  PubMed  CAS  Google Scholar 

  60. Fehniger TA, Cooper MA, Caligiuri MA. Interleukin-2 and interleukin-15: immunotherapy for cancer. Cytokine Growth Factor Rev 2002; 13: 169–83

    Article  PubMed  CAS  Google Scholar 

  61. Rosenberg SA, Lotze MT, Yang JC, Topalian SL, Chang AE, Schwartzentruber DJ et al. Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 1993; 85: 622–32

    Article  PubMed  CAS  Google Scholar 

  62. West WH, Tauer KW, Yannelli JR, Marshall GD, Orr DW, Thurman GB et al. Constant-infusion recombinant interleukin-2 in adoptive immunotherapy of advanced cancer. N Engl J Med 1987; 316: 898–905

    Article  PubMed  CAS  Google Scholar 

  63. Yang JC, Sherry RM, Steinberg SM, Topalian SL, Schwartzentruber DJ, Hwu P et al. Randomized study of high-dose and low-dose interleukin-2 in patients with metastatic renal cancer. J Clin Oncol 2003; 21: 3127–32

    Article  PubMed  CAS  Google Scholar 

  64. Lotze MT, Chang AE, Seipp CA, Simpson C, Vetto JT, Rosenberg SA. High-dose recombinant interleukin 2 in the treatment of patients with disseminated cancer. Responses, treatment-related morbidity, and histologic findings. JAMA 1986; 256: 3117–24

    Google Scholar 

  65. Heslop HE, Gottlieb DJ, Bianchi AC, Meager A, Prentice HG, Mehta AB et al. In vivo induction of gamma interferon and tumor necrosis factor by interleukin-2 infusion following intensive chemotherapy or autologous marrow transplantation. Blood 1989; 74: 1374–80

    PubMed  CAS  Google Scholar 

  66. Barouch DH, Santra S, Steenbeke TD, Zheng XX, Perry HC, Davies ME et al. Augmentation and suppression of immune responses to an HIV-1 DNA vaccine by plasmid cytokine/Ig administration. J Immunol 1998; 161: 1875–82

    PubMed  CAS  Google Scholar 

  67. Oosterwijk-Wakka JC, Tiemessen DM, Bleumer I, De Vries IJ, Jongmans W, Adema GJ et al. Vaccination of patients with metastatic renal cell carcinoma with autologous dendritic cells pulsed with autologous tumor antigens in combination with interleukin-2: a phase 1 study. J Immunother 2002; 25: 500–8

    Article  PubMed  CAS  Google Scholar 

  68. Thompson JA, Shulman KL, Kenyunes MC, Lindgren CG, Collins C, Lange PH et al. Prolonged continuous intravenous infusion interleukin-2 and lymphokineUncorrected

    Google Scholar 

  69. Proof

    Google Scholar 

  70. activated killer-cell therapy for metastatic renal cell carcinoma. J Clin Oncol 1992; 10: 960–8

    Google Scholar 

  71. Hladik F, Tratkiewicz JA, Tilg H, Vogel W, Schwulera U, Kronke M et al. Biologic activity of low dosage IL-2 treatment in vivo. Molecular assessment of cytokine network interaction. J Immunol 1994; 153: 1449–54

    Google Scholar 

  72. Mier JW, Vachino G, van der Meer JW, Numerof RP, Adams S, Cannon JG et al. Induction of circulating tumor necrosis factor (TNF-alpha) as the mechanism for the febrile response to interleukin-2 (IL-2) in cancer patients. J Clin Immunol 1988; 8: 426–32

    Article  PubMed  CAS  Google Scholar 

  73. Lange T, Marshall L, Spath-Schwalbe E, Fehm HL, Born J. Systemic immune parameters and sleep after ultralow dose administration of IL-2 in healthy men. Brain Behav Immun 2002; 16: 663–74

    Article  PubMed  CAS  Google Scholar 

  74. De Stefani A, Forni G, Ragona R, Cavallo G, Bussi M, Usai A et al. Improved survival with perilymphatic interleukin 2 in patients with resectable squamous cell carcinoma of the oral cavity and oropharynx. Cancer 2002; 95: 90–7

    Article  PubMed  Google Scholar 

  75. Yang JC, Topalian SL, Parkinson D, Schwartzentruber DJ, Weber JS, Ettinghausen SE et al. Randomized comparison of high-dose and low-dose intravenous interleukin-2 for the therapy of metastatic renal cell carcinoma: An interim report. J Clin Oncol 1994; 12: 1572–6

    PubMed  CAS  Google Scholar 

  76. Burgess AW, Metcalf D. The nature and action of granulocyte- macrophage colony stimulating factors. Blood 1980; 56: 947–58

    PubMed  CAS  Google Scholar 

  77. Stanley E, Lieschke GJ, Grail D, Metcalf D, Hodgson G, Gall JA et al. Granulocyte/macrophage colony-stimulating factor-deficient mice show no major perturbation of hematopoiesis but develop a characteristic pulmonary pathology. Proc Natl Acad Sci USA 1994; 91: 5592–6

    Article  PubMed  CAS  Google Scholar 

  78. Hamilton JA, Stanley ER, Burgess AW, Shadduck RK. Stimulation of macrophage plasminogen activator activity by colony-stimulating factors. J Cell Physiol 1980; 103: 435–45

    Article  PubMed  CAS  Google Scholar 

  79. Kay AB, Ying S, Varney V, Gaga M, Durham SR, Moqbel R et al. Messenger RNA expression of the cytokine gene cluster, interleukin 3 (IL-3), IL-4, IL-5, and granulocyte/ macrophage colony-stimulating factor, in allergeninduced late-phase cutaneous reactions in atopic subjects. J Exp Med 1991; 173: 775–8

    Article  PubMed  CAS  Google Scholar 

  80. Williamson DJ, Begley CG, Vadas MA, Metcalf D. The detection and initial characterization of colony-stimu- lating factors in synovial fluid. Clin Exp Immunol 1988; 72: 67–73

    PubMed  CAS  Google Scholar 

  81. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693–702

    Article  PubMed  CAS  Google Scholar 

  82. Daro E, Pulendran B, Brasel K, Teepe M, Pettit D, Lynch DH et al. Polyethylene glycol-modified GM-CSF expands CD11b(high)CD11c(high) but notCD11b(low) CD11c(high) murine dendritic cells in vivo: a comparative analysis with Flt3 ligand. J Immunol 2000; 165: 49–58

    PubMed  CAS  Google Scholar 

  83. Kiertscher SM, Gitlitz BJ, Figlin RA, Roth MD. Granulocyte/ macrophage-colony stimulating factor and interleukin- 4 expand and activate type-1 dendritic cells (DC1) when administered in vivo to cancer patients. Int J Cancer 2003; 107: 256–61

    Article  PubMed  CAS  Google Scholar 

  84. Nemunaitis J, Singer JW, Buckner CD, Durnam D, Epstein C, Hill R et al. Use of recombinant human granulocyte-macrophage colony-stimulating factor in graft failure after bone marrow transplantation. Blood 1990; 76: 245–53

    PubMed  CAS  Google Scholar 

  85. Brandt SJ, Peters WP, Atwater SK, Kurtzberg J, Borowitz MJ, Jones RB et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med 1988; 318: 869–76

    Article  PubMed  CAS  Google Scholar 

  86. Rowe JM, Andersen JW, Mazza JJ, Bennett JM, Paietta E, Hayes FA et al. A randomized placebo-controlled phase III study of granulocyte-macrophage colonystimulating factor in adult patients (> 55 to 70 years of age) with acute myelogenous leukemia: a study of the Eastern Cooperative Oncology Group (E1490). Blood 1995; 86: 457–62

    PubMed  CAS  Google Scholar 

  87. Ou-Yang P, Hwang LH, Tao MH, Chiang BL, Chen DS. Co-delivery of GM-CSF gene enhances the immune responses of hepatitis C viral core protein-expressing DNA vaccine: role of dendritic cells. J Med Virol 2002; 66: 320–8

    Article  PubMed  CAS  Google Scholar 

  88. Levitsky HI, Montgomery J, Ahmadzadeh M, Staveley- O’Carroll K, Guarnieri F, Longo DL et al. Immunization with granulocyte-macrophage colony-stimulating factor- transduced, but not B7-1-transduced, lymphoma cells primes idiotype- specific T cells and generates potent systemic antitumor immunity. J Immunol 1996; 156: 3858–65

    Google Scholar 

  89. Beyer J, Schwella N, Zingsem J, Strohscheer I, Schwaner I, Oettle H et al. Hematopoietic rescue after high-dose chemotherapy using autologous peripheral-blood progenitor cells or bone marrow: a randomized comparison. J Clin Oncol 1995; 13: 1328–35

    PubMed  CAS  Google Scholar 

  90. Soiffer R, Hodi FS, Haluska F, Jung K, Gillessen S, Singer S et al. Vaccination with irradiated, autologous melanoma cells engineered to secrete granulocytemacrophage colony-stimulating factor by adenoviralmediated gene transfer augments antitumor immunity in patients with metastatic melanoma. J Clin Oncol 2003; 21: 3343–50

    Article  PubMed  CAS  Google Scholar 

  91. Dranoff G. GM-CSF-based cancer vaccines. Immunol Rev 2002; 188: 147–54

    CAS  Google Scholar 

  92. Colombo MP, Ferrari G, Stoppacciaro A, Parenza M, Rodolfo M, Mavilio F et al. Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 1991; 173: 889–97

    Article  PubMed  CAS  Google Scholar 

  93. Marrogi AJ, Munshi A, Merogi AJ, Ohadike Y, El Habashi A, Marrogi OL et al. Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer 1997; 74: 492–501

    Google Scholar 

  94. Ohm JE, Shurin MR, Esche C, Lotze MT, Carbone DP, Gabrilovich DI. Effect of vascular endothelial growth factor and FLT3 ligand on dendritic cell generation in vivo. J Immunol 1999; 163: 3260–8

    PubMed  CAS  Google Scholar 

  95. Wing EJ, Magee DM, Whiteside TL, Kaplan SS, Shadduck RK. Recombinant human granulocyte/macrophage colony-stimulating factor enhances monocyte cytotoxicity and secretion of tumor necrosis factor alpha and interferon in cancer patients. Blood 1989; 73: 643–6

    PubMed  CAS  Google Scholar 

  96. Spitler LE, Grossbard ML, Ernstoff MS, Silver G, Jacobs M, Hayes FA et al. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J Clin Oncol 2000; 18: 1614– 21

    PubMed  CAS  Google Scholar 

  97. Milano-Bausset E, Gaudart J, Rome A, Coze C, Gentet JC, Padovani L et al. Retrospective comparison of neutropenia in children with Ewing sarcoma treated with chemotherapy and granulocyte colony-stimulating factor (G-CSF) or pegylated G-CSF. Clin Ther 2009; 31: 2388–95

    Article  PubMed  CAS  Google Scholar 

  98. Kroschinsky F, Holig K, Ehninger G. The role of pegfilgrastim in mobilization of hematopoietic stem cells. Transfus Apher Sci 2008; 38: 237–44 98 Nauts HC. The Bibilography of Reports Concerning the Experimental Clinical Use of Coley Toxins, New York. Cancer Research Institute Publication 1975

    Google Scholar 

  99. Haaff EO, Dresner SM, Ratliff TL, Catalona WJ. Two courses of intravesical Bacillus Calmette-Guerin for transitional cell carcinoma of the bladder. J Urol 1986; 136: 820

    PubMed  CAS  Google Scholar 

  100. Pinsky CM, Camacho FJ, Kerr D, Geller NL, Klein FA, Herr HA et al. Intravesical administration of Bacillus Calmette-Guerin in patients with recurrent superficial carcinoma of the urinary bladder: Report of a prospective, randomized trial. Cancer Treat Rep 1985; 69: 47

    PubMed  CAS  Google Scholar 

  101. Herr HW, Schwalb DM, Zhang ZF, Sogani PC, Fair WR, Whitmore WF Jr et al. Intravesical bacillus Calmette- Guerin therapy prevents tumor progression and death from superficial bladder cancer: ten-year follow- up of a prospective randomized trial. J Clin Oncol 1995; 13: 1404–8

    PubMed  CAS  Google Scholar 

  102. Lamm DL, Griffith JG. Intravesical therapy: does it affect the natural history of superficial bladder cancer? Semin Urol 1992; 10: 39–44

    PubMed  CAS  Google Scholar 

  103. Sarosdy MF, Lamm DL. Long-term results of intravesical bacillus Calmette-Guerin therapy for superficial bladder cancer. J Urol 1989; 142: 719–22

    PubMed  CAS  Google Scholar 

  104. De Jager RL, Guinan P, Lamm DL, Khanna O, Brosman S, De Kernion J. et al. Long-term complete remission in bladder carcinoma in situ with intravesical TICE bacillus Calmette Guerin. Overview analysis of six phase II clinical trials. Urology 1991; 38: 507–13

    Google Scholar 

  105. Herr HW, Wartinger DD, Fair WR, Oettgen HF, Oettgen HF. Bacillus Calmette-Guerin therapy for superficial bladder cancer: a 10-year followup. J Urol 1992; 147: 1020–3

    PubMed  CAS  Google Scholar 

  106. Lamm DL, Blumenstein BA, Crissman JD, Montie JE, Gottesman JE, Lowe BA et al. Maintenance bacillus Calmette-Guerin immunotherapy for recurrent TA, T1 and carcinoma in situ transitional cell carcinoma of the bladder: a randomized Southwest Oncology Group Study. J Urol 2000; 163: 1124–9

    Article  PubMed  CAS  Google Scholar 

  107. Ayres BE, Griffiths TR, Persad RA. Is the role of intravesical bacillus Calmette-Guerin in non-muscle-invasive bladder cancer changing? BJU Int 2010; 105 Suppl 2: 8–13

    Article  PubMed  Google Scholar 

  108. Jimenez-Cruz JF, Vera-Donoso CD, Leiva O, Pamplona M, Rioja-Sanz LA, Martinez-Lasierra M et al. Intravesical immunoprophylaxis in recurrent superficial bladder cancer (Stage T1): multicenter trial comparing bacille Calmette-Guerin and interferon-alpha. Urology 1997; 50: 529–35

    Article  PubMed  CAS  Google Scholar 

  109. Nepple KG, Aubert HA, Braasch MR, O’Donnell MA. Combination of BCG and interferon intravesical immunotherapy: an update. World J Urol 2009; 27: 343–6

    Article  PubMed  CAS  Google Scholar 

  110. Lage JM, Bauer WC, Kelley DR, Ratliff TL, Catalona WJ. Histological parameters and pitfalls in the interpretation of bladder biopsies in Bacillus Calmette-Guerin treatment of superficial bladder cancer. J Urol 1986; 135: 916

    PubMed  CAS  Google Scholar 

  111. Haaff EO, Caralona WJ, Ratliff TL. Detection of interleukin- 2 in the urine of patients with superficial bladder tumors after reatment with intravesical BCG. J Urol 1986; 136: 970

    PubMed  CAS  Google Scholar 

  112. Taniguchi K, Koga S, Nishikido M, Yamashita S, Sakuragi T, Kanetake H et al. Systemic immune response after intravesical instillation of bacille Calmette-Guerin (BCG) for superficial bladder cancer. Clin Exp Immunol 1999; 115: 131–5

    Article  PubMed  CAS  Google Scholar 

  113. Kaempfer R, Gerez L, Farbstein H, Madar L, Hirschman O, Nussinovich R et al. Prediction of response to treatment in superficial bladder carcinoma through pattern of interleukin-2 gene expression. J Clin Oncol 1996; 14: 1778–86

    PubMed  CAS  Google Scholar 

  114. Watanabe E, Matsuyama H, Matsuda K, Ohmi C, Tei Y, Yoshihiro S et al. Urinary interleukin-2 may predict clinical outcome of intravesical bacillus Calmette- Guerin immunotherapy for carcinoma in situ of the bladder. Cancer Immunol Immunother 2003; 52: 481–6

    Article  PubMed  CAS  Google Scholar 

  115. Amery WK, Bruynseels JP. Levamisole, the story and the lessons. Int J Immunopharmacol 1992; 14: 481–6

    Article  PubMed  CAS  Google Scholar 

  116. Mutch RS, Hutson PR. Levamisole in the adjuvant treatment of colon cancer. Clin Pharm 1991; 10: 95–109

    PubMed  CAS  Google Scholar 

  117. Holcombe RF, Milovanovic T, Stewart RM, Brodhag TM. Investigating the role of immunomodulation for colon cancer prevention: results of an in vivo dose escalation trial of levamisole with immunologic endpoints. Cancer Detect Prev 2001; 25: 183–91

    PubMed  CAS  Google Scholar 

  118. Porschen R, Bermann A, Loffler T, Haack G, Rettig K, Anger Y et al. Fluorouracil plus leucovorin as effective adjuvant chemotherapy in curatively resected stage III colon cancer: results of the trial adjCCA-01. J Clin Oncol 2001; 19: 1787–94

    PubMed  CAS  Google Scholar 

  119. Dahl O, Fluge O, Carlsen E, Wiig JN, Myrvold HE, Vonen B et al. Final results of a randomised phase III study on adjuvant chemotherapy with 5 FU and levamisol in colon and rectum cancer stage II and III by the Norwegian Gastrointestinal Cancer Group. Acta Oncol 2009; 48: 368–76

    Article  PubMed  CAS  Google Scholar 

  120. Kohno N, Aogi K, Minami H, Nakamura S, Asaga T, Iino Y et al. Zoledronic acid significantly reduces skeletal complications compared with placebo in Japanese women with bone metastases from breast cancer: a randomized, placebo-controlled trial. J Clin Oncol 2005; 23: 3314–21

    Article  PubMed  CAS  Google Scholar 

  121. Body JJ, Diel IJ, Lichinitser MR, Kreuser ED, Dornoff W, Gorbunova VA et al. Intravenous ibandronate reduces he incidence of skeletal complications in patients with breast cancer and bone metastases. Ann Oncol 2003; 14: 1399–405

    Article  PubMed  Google Scholar 

  122. Paterson AH, Powles TJ, Kanis JA, McCloskey E, Hanson J, Ashley S. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 1993; 11: 59–65

    PubMed  CAS  Google Scholar 

  123. Shibuya K, Mathers CD, Boschi-Pinto C, Lopez AD, Murray CJ. Global and regional estimates of cancer mortality and incidence by site: II. Results for the global burden of disease 2000. BMC Cancer 2002; 2: 37

    Google Scholar 

  124. Winter MC, Holen I, Coleman RE. Exploring the antitumour activity of bisphosphonates in early breast cancer. Cancer Treat Rev 2008; 34: 453–75

    Article  PubMed  CAS  Google Scholar 

  125. Trinkaus M, Ooi WS, Amir E, Popovic S, Kalina M, Kahn H et al. Examination of the mechanisms of osteolysis in patients with metastatic breast cancer. Oncol Rep 2009; 21: 1153–9

    PubMed  CAS  Google Scholar 

  126. Santini D, Vincenzi B, Avvisati G, Dicuonzo G, Battistoni F, Gavasci M et al. Pamidronate induces modifications of circulating angiogenetic factors in cancer patients. Clin Cancer Res 2002; 8: 1080–4

    PubMed  CAS  Google Scholar 

  127. Wood J, Bonjean K, Ruetz S, Bellahcene A, Devy L, Foidart JM et al. Novel antiangiogenic effects of the bisphosphonate compound zoledronic acid. J Pharmacol Exp Ther 2002; 302: 1055–61

    Article  PubMed  CAS  Google Scholar 

  128. Melani C, Sangaletti S, Barazzetta FM, Werb Z, Colombo MP. Amino-biphosphonate-mediated MMP-9 inhibition breaks the tumor-bone marrow axis responsible for myeloid-derived suppressor cell expansion and macrophage infiltration in tumor stroma. Cancer Res 2007; 67: 11438–46

    Article  PubMed  CAS  Google Scholar 

  129. Badger AM, King AG, Talmadge JE, Schwartz DA, Picker DH, Mirabelli CK et al. Induction of non-specific suppressor cells in normal Lewis rats by a novel azaspirane SK&F 105685. J Autoimmun 1990; 3: 485–500

    Article  PubMed  CAS  Google Scholar 

  130. Badger AM, DiMartino MJ, Talmadge JE, Picker DH, Schwartz DA, Dorman JW et al. Inhibition of animal models of autoimmune disease and the induction of non-specific suppressor cells by SK&F 105685 and related azaspiranes. Int J Immunopharmacol 1989; 11: 839–46

    Article  PubMed  CAS  Google Scholar 

  131. King AG, Olivera D, Talmadge JE, Badger AM. Induction of non-specific suppressor cells and myeloregulatory effects of an immunomodulatory azaspirane, SK&F 105685. Int J Immunopharmacol 1991; 13: 91–100

    Article  PubMed  CAS  Google Scholar 

  132. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 2009; 9: 162–74

    Article  PubMed  CAS  Google Scholar 

  133. Serafini P, Borrello I, Bronte V. Myeloid suppressor cells in cancer: recruitment, phenotype, properties, and mechanisms of immune suppression. Semin Cancer Biol 2006; 16: 53–65

    Article  PubMed  CAS  Google Scholar 

  134. Ochoa AC, Zea AH, Hernandez C, Rodriguez PC. Arginase, prostaglandins, and myeloid-derived suppressor cells in renal cell carcinoma. Clin Cancer Res 2007; 13: 721s-6s

    Article  PubMed  CAS  Google Scholar 

  135. Talmadge JE. Pathways mediating the expansion and immunosuppressive activity of myeloid-derived suppressor cells and their relevance to cancer therapy. Clin Cancer Res 2007; 13: 5243–8

    Article  PubMed  CAS  Google Scholar 

  136. Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, Young MRI. Mechanisms of immune suppression in patients with head and neck cancer: Presence of CD34+ cells which suppress immune functions within cancers that secrete granulocyte-macrophage colonystimulating factor. Clin Cancer Res 1995; 1: 95–103

    PubMed  CAS  Google Scholar 

  137. Zea AH, Rodriguez PC, Atkins MB, Hernandez C, Signoretti S, Zabaleta J et al. Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res 2005; 65: 3044–8

    PubMed  CAS  Google Scholar 

  138. Mirza N, Fishman M, Fricke I, Dunn M, Neuger AM, Frost TJ et al. All-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patients. Cancer Res 2006; 66: 9299–307

    Article  PubMed  CAS  Google Scholar 

  139. Almand B, Clark JI, Nikitina E, van Beynen J, English NR, Knight SC et al. Increased production of immature myeloid cells in cancer patients: a mechanism o immunosuppression in cancer. J Immunol 2001; 166: 678–89

    PubMed  CAS  Google Scholar 

  140. Ko HJ, Kim YJ, Kim YS, Chang WS, Ko SY, Chang SY et al. A combination of chemoimmunotherapies can efficiently break self-tolerance and induce antitumor immunity in a tolerogenic murine tumor model. Cancer Res 2007; 67: 7477–86

    Article  PubMed  CAS  Google Scholar 

  141. Pan PY, Zang Y, Weber K, Meseck ML, Chen SH. OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther 2002; 6: 528–36

    Article  PubMed  CAS  Google Scholar 

  142. Imai H, Saio M, Nonaka K, Suwa T, Umemura N, Ouyang GF et al. Depletion of CD4+CD25+ regulatory T cells enhances interleukin-2-induced antitumor immunity in a mouse model of colon adenocarcinoma. Cancer Sci 2007; 98: 416–23

    Article  PubMed  CAS  Google Scholar 

  143. Bubenik J. Depletion of Treg cells augments the therapeutic effect of cancer vaccines. Folia Biol (Praha) 2006; 52: 202–4

    CAS  Google Scholar 

  144. Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R et al. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Res 2003; 63: 4441–9

    PubMed  CAS  Google Scholar 

  145. Suzuki E, Kapoor V, Jassar AS, Kaiser LR, Albelda SM. Gemcitabine selectively eliminates splenic Gr-1+/ CD11b+ myeloid suppressor cells in tumor-bearing animals and enhances antitumor immune activity. Clin Cancer Res 2005; 11: 6713–21

    Article  PubMed  CAS  Google Scholar 

  146. Peng G, Guo Z, Kiniwa Y, Voo KS, Peng W, Fu T et al. Tolllike receptor 8-mediated reversal of CD4+ regulatory T cell function. Science 2005; 309: 1380–4

    Article  PubMed  CAS  Google Scholar 

  147. Young MR, Young ME, Wright MA. Myelopoiesis-associated suppressor-cell activity in mice with Lewis lung carcinoma tumors: interferon-gamma plus tumor necrosis factor-alpha synergistically reduce suppressor cell activity. Int J Cancer 1990; 46: 245–50

    Article  PubMed  CAS  Google Scholar 

  148. Seung LP, Weichselbaum RR, Toledano A, Schreiber K, Schreiber H. Radiation can inhibit tumor growth indirectly while depleting circulating leukocytes. Radiat Res 1996; 146: 612–8

    Article  PubMed  CAS  Google Scholar 

  149. Kusmartsev SA, Li Y, Chen SH. Gr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulation. J Immunol 2000; 165: 779–85

    PubMed  CAS  Google Scholar 

  150. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/ pharmacodynamic relationship. Clin Cancer Res 2003; 9: 327–37

    PubMed  CAS  Google Scholar 

  151. Ko JS, Bukowski RM, Fincke JH. Myeloid-derived suppressor cells: a novel therapeutic target. Curr Oncol Rep 2009; 11: 87–93

    Article  PubMed  CAS  Google Scholar 

  152. Ozao-Choy J, Ma G, Kao J, Wang GX, Meseck M, Sung M et al. The novel role of tyrosine kinase inhibitor in the reversal of immune suppression and modulation of tumor microenvironment for immune-based cancer therapies. Cancer Res 2009; 69: 2514–22

    Article  PubMed  CAS  Google Scholar 

  153. van CH, van der Veldt AA, Vroling L, Oosterhoff D, Broxterman HJ, Scheper RJ et al. Sunitinib-induced myeloid lineage redistribution in renal cell cancer patients: CD1c+ dendritic cell frequency predicts progression-free survival. Clin Cancer Res 2008; 14: 5884–92

    Google Scholar 

  154. Xin H, Zhang C, Herrmann A, Du Y, Figlin R, Yu H. Sunitinib inhibition of Stat3 induces renal cell carcinoma tumor cell apoptosis and reduces immunosuppressive cells. Cancer Res 2009; 69: 2506–13

    Article  PubMed  CAS  Google Scholar 

  155. Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM. SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2003; 2: 471–8

    PubMed  CAS  Google Scholar 

  156. Abrams TJ, Murray LJ, Pesenti E, Holway VW, Colombo T, Lee LB et al. Preclinical evaluation of the tyrosine kinase inhibitor SU11248 as a single agent and in combination with “standard of care” therapeutic agents for the treatment of breast cancer. Mol Cancer Ther 2003; 2: 1011–21

    PubMed  CAS  Google Scholar 

  157. Cabebe E, Wakelee H. Sunitinib: a newly approved small-molecule inhibitor of angiogenesis. Drugs Today (Barc) 2006; 42: 387–98

    Article  CAS  Google Scholar 

  158. Shankar G, Pendley C, Stein KE. A risk-based bioanalytical strategy for the assessment of antibody immune responses against biological drugs. Nat Biotechnol 2007; 25: 555–61

    Article  PubMed  CAS  Google Scholar 

  159. O’Farrell AM, Abrams TJ, Yuen HA, Ngai TJ, Louie SG, Yee KW et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 2003; 101: 3597–605

    Article  PubMed  CAS  Google Scholar 

  160. Chou AJ, Kleinerman ES, Krailo MD, Chen Z, Betcher DL, Healey JH et al. Addition of muramyl tripeptide to chemotherapy for patients with newly diagnosed metastatic osteosarcoma: a report from the Children’s Oncology Group. Cancer 2009; 115: 5339–48

    Article  PubMed  CAS  Google Scholar 

  161. Wood DD, Staruch MJ, Durette PL, Melvin WV, Graham BK. Role of interleukin-1 in the adjuvanticity of muramyl dipeptide in vivo. In: Oppenheim JJ, Cohen S, editors. Interleukins, Lymphokines and Cytokines.New York: Raven Press; 1983 p. 691

    Google Scholar 

  162. Meyers PA. Muramyl tripeptide (mifamurtide) for the treatment of osteosarcoma. Expert Rev Anticancer Ther 2009; 9: 1035–49

    Article  PubMed  CAS  Google Scholar 

  163. Ellouz F, Adam A, Ciorbaru R, Lederer E. Minimal structural requirements for adjuvant activity of bacterial peptidoglycan derivatives. Biochem Biophys Res Commun 1974; 59: 1317–25

    Article  PubMed  CAS  Google Scholar 

  164. Fedorocko P, Hoferova Z, Hofer M, Brezani P. Administration of liposomal muramyl tripeptide phosphatidylethanolamine (MTP-PE) and diclofenac in the combination attenuates their anti-tumor activities. Neoplasma 2003; 50: 176–84

    PubMed  CAS  Google Scholar 

  165. Killion JJ, Bucana CD, Radinsky R, Dong Z, O’Reilly T, Bilbe G et al. Maintenance of intestinal epithelium structural integrity and mucosal leukocytes during chemotherapy by oral administration of muramyl tripeptide phosphatidylethanolamine. Cancer Biother Radiopharm 1996; 11: 363–71

    Article  PubMed  CAS  Google Scholar 

  166. Aoyagi T, Suda H, Nagai M, Ogawa K, Suzuki J. Aminopeptidase activities on the surface of mammalian cells. Biochim Biophys Acta 1976; 452: 131–43

    PubMed  CAS  Google Scholar 

  167. Morahan PS, Edelson PJ, Gass K. Changes in macrophage ectoenzymes associated with anti-tumor activity. J Immunol 1980; 125: 1312–7

    PubMed  CAS  Google Scholar 

  168. Urabe A, Mutoh Y, Mizoguchi H, Takaku F, Ogawa N. Ubenimex in the treatment of acute nonlymphocytic leukemia in adults. Ann Hematol 1993; 67: 63–6

    Article  PubMed  CAS  Google Scholar 

  169. Yasumitsu T, Ohshima S, Nakano N, Kotake Y, Tominaga S. Bestatin in resected lung cancer. A randomized clinical trial. Acta Oncol 1990; 29: 827

    CAS  Google Scholar 

  170. Hiraoka A, Shibata H, Masaoka T. Immunopotentiation with Ubenimex for prevention of leukemia relapse after allogeneic BMT. The Study Group of Ubenimex for BMT. Transplant Proc 1992; 24: 3047–8

    CAS  Google Scholar 

  171. Goldstein AL. Thymic Hormones and Lymphokines. Plenum Press; 1984

    Google Scholar 

  172. Ichinose Y, Genka K, Koike T, Kato H, Watanabe Y, Mori T et al. Randomized double-blind placebo-controlled trial of bestatin in patients with resected stage I squamous-cell lung carcinoma. J Natl Cancer Inst 2003; 95: 605–10

    Article  PubMed  CAS  Google Scholar 

  173. Ito S, Miyahara R, Takahashi R, Nagai S, Takenada K, Wada H et al. Stromal aminopeptidase N expression: correlation with angiogenesis in non-small-cell lung cancer. Gen Thorac Cardiovasc Surg 2009; 57: 591–8

    Article  PubMed  Google Scholar 

  174. Janeway CA, Jr., Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20: 197–216

    Article  PubMed  CAS  Google Scholar 

  175. Kadowaki N, Ho S, Antonenko S, Malefyt RW, Kastelein RA, Bazan F et al. Subsets of human dendritic cell precursors express different toll-like receptors and respond to different microbial antigens. J Exp Med 2001; 194: 863–9

    Article  PubMed  CAS  Google Scholar 

  176. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H. Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 2002; 32: 1958–68

    Article  PubMed  CAS  Google Scholar 

  177. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408: 740–5

    Article  PubMed  CAS  Google Scholar 

  178. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20: 709–60 179 Krug A, Rothenfusser S, Hornung V, Jahrsdorfer B, Blackwell S, Ballas ZK et al. Identification of CpG oligonucleotide sequences with high induction of IFN-alpha/beta in plasmacytoid dendritic cells. Eur J Immunol 2001; 31: 2154–63

    Google Scholar 

  179. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R et al. CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 1995; 374: 546–9

    Article  PubMed  CAS  Google Scholar 

  180. Hartmann G, Krieg AM. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 2000; 164: 944–53

    PubMed  CAS  Google Scholar 

  181. Marshall JD, Fearon K, Abbate C, Subramanian S, Yee P, Gregorio J et al. Identification of a novel CpG DNA class and motif that optimally stimulate B cell and plasmacytoid dendritic cell functions. J Leukoc Biol 2003; 73: 781–92

    Article  PubMed  CAS  Google Scholar 

  182. Cho HJ, Takabayashi K, Cheng PM, Nguyen MD, Corr M, Tuck S et al. Immunostimulatory DNA-based vaccines induce cytotoxic lymphocyte activity by a T-helper cell-independent mechanism. Nat Biotechnol 2000; 18: 509–14

    Article  PubMed  CAS  Google Scholar 

  183. Ballas ZK, Rasmussen WL, Krieg AM. Induction of NK activity in murine and human cells by CpG motifs in oligodeoxynucleotides and bacterial DNA. J Immunol 1996; 157: 1840–5

    PubMed  CAS  Google Scholar 

  184. Roman M, Martin-Orozco E, Goodman JS, Nguyen MD, Sato Y, Ronaghy A et al. Immunostimulatory DNA sequences function as T helper-1-promoting adjuvants. Nat Med 1997; 3: 849–54

    Article  PubMed  CAS  Google Scholar 

  185. Shirota H, Sano K, Kikuchi T, Tamura G, Shirato K. Regulation of murine airway eosinophilia and Th2 cells by antigen-conjugated CpG oligodeoxynucleotides as a novel antigen-specific immunomodulator. J Immunol 2000; 164: 5575–82

    PubMed  CAS  Google Scholar 

  186. Kim SK, Ragupathi G, Musselli C, Choi SJ, Park YS, Livingston PO. Comparison of the effect of different immunological adjuvants on the antibody and T-cell response to immunization with MUC1-KLH and GD3- KLH conjugate cancer vaccines. Vaccine 1999; 18: 597–603

    Article  PubMed  CAS  Google Scholar 

  187. Chu RS, Targoni OS, Krieg AM, Lehmann PV, Harding CV. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Th1) immunity. J Exp Med 1997; 186: 1623–31

    Article  PubMed  CAS  Google Scholar 

  188. Davis HL. Use of CpG DNA for enhancing specific immune responses. Curr Top Microbiol Immunol 2000; 247: 171–83

    PubMed  CAS  Google Scholar 

  189. Zwaveling S, Ferreira Mota SC, Nouta J, Johnson M, Lipford GB, Offringa R et al. Established human papillomavirus type 16-expressing tumors are effectively eradicated following vaccination with long peptides. J Immunol 2002; 169: 350–8

    Google Scholar 

  190. Stern BV, Boehm BO, Tary-Lehmann M. Vaccination with tumor peptide in CpG adjuvant protects via IFN-gamma-dependent CD4 cell immunity. J Immunol 2002; 168: 6099–105

    PubMed  CAS  Google Scholar 

  191. Heckelsmiller K, Beck S, Rall K, Sipos B, Schlamp A, Tuma E et al. Combined dendritic cell- and CpG oligonucleotide- based immune therapy cures large murine tumors that resist chemotherapy. Eur J Immunol 2002; 32: 3235–45

    Article  PubMed  CAS  Google Scholar 

  192. Liu HM, Newbrough SE, Bhatia SK, Dahle CE, Krieg

    Google Scholar 

  193. AM, Weiner GJ. Immunostimulatory CpG oligodeoxynucleotides enhance the immune response to vaccine strategies involving granulocyte-macrophage colonystimulating factor. Blood 1998; 92: 3730–6

    Google Scholar 

  194. Sandler AD, Chihara H, Kobayashi G, Zhu X, Miller MA, Scott DL et al. CpG oligonucleotides enhance the tumor antigen-specific immune response of a granulocyte macrophage colony-stimulating factor-based vaccine strategy in neuroblastoma. Cancer Res 2003; 63: 394–9

    PubMed  CAS  Google Scholar 

  195. Heckelsmiller K, Rall K, Beck S, Schlamp A, Seiderer J, Jahrsdorfer B et al. Peritumoral CpG DNA elicits a coordinated response of CD8 T cells and innate effectors to cure established tumors in a murine colon carcinoma model. J Immunol 2002; 169: 3892–9

    PubMed  CAS  Google Scholar 

  196. Ballas ZK, Krieg AM, Warren T, Rasmussen W, Davis HL, Waldschmidt M et al. Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J Immunol 2001; 167: 4878–86

    PubMed  CAS  Google Scholar 

  197. Vollmer J, Krieg AM. Immunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonists. Adv Drug Deliv Rev 2009; 61: 195–204

    Article  PubMed  CAS  Google Scholar 

  198. Krieg AM. Antitumor applications of stimulating tolllike receptor 9 with CpG oligodeoxynucleotides. Curr Oncol Rep 2004; 6: 88–95

    Article  PubMed  Google Scholar 

  199. Molenkamp BG, Sluijter BJ, Leeuwen PA, Santegoets SJ, Meijer S, Wijnands PG et al. Local administration of PF-3512676 CpG-B instigates tumor-specific CD8+ T-cell reactivity in melanoma patients. Clin Cancer Res 2008; 14: 4532–42

    Article  PubMed  CAS  Google Scholar 

  200. Manegold C, Gravenor D, Woytowitz D, Mezger J, Hirsh V, Albert G et al. Randomized phase II trial of a toll-like receptor 9 agonist oligodeoxynucleotide, PF-3512676, in combination with first-line taxane plus platinum chemotherapy for advanced-stage non-small-cell lung cancer. J Clin Oncol 2008; 26: 3979–86

    Article  PubMed  CAS  Google Scholar 

  201. Krieg AM. Toll-like receptor 9 (TLR9) agonists in the treatment of cancer. Oncogene 2008; 27: 161–7

    Article  PubMed  CAS  Google Scholar 

  202. Storek J, Storb R. T-cell reconstitution after stem-cell transplantation – by which organ? Lancet 2000; 355: 1843–4

    Article  PubMed  CAS  Google Scholar 

  203. Talmadge JE, Reed E, Ino K, Kessinger A, Kuszynski C, Heimann D et al. Rapid immunologic reconstitution following transplantation with mobilized peripheral blood stem cells as compared to bone marrow. Bone Marrow Transplant 1997; 19: 161–72

    Article  PubMed  CAS  Google Scholar 

  204. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ et al. Graft-versus-leukemia reactions after bone marrow transplantation. Blood 1990; 75: 555–62

    PubMed  CAS  Google Scholar 

  205. Champlin R, Ho W, Gajewski J, Feig S, Burnison M, Holley G et al. Selective depletion of CD8+ T lymphocytes for prevention of graft-versus-host disease after allogeneic bone marrow transplantation. Blood 1990; 76: 418–23

    PubMed  CAS  Google Scholar 

  206. Riddell SR, Watanabe KS, Goodrich JM, Li CR, Agha ME, Greenberg PD. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 1992; 257: 238–41

    Article  PubMed  CAS  Google Scholar 

  207. Walter EA, Greenberg PD, Gilbert MJ, Finch RJ, Watanabe KS, Thomas ED et al. Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N Engl J Med 1995; 333: 1038–44

    Article  PubMed  CAS  Google Scholar 

  208. Higuchi CM, Thompson JA, Petersen FB, Buckner CD, Fefer A. Toxicity and immunomodulatory effects of interleukin-2 after autologous bone marrow transplantation for hematologic malignancies. Blood 1991; 77: 2561–8

    PubMed  CAS  Google Scholar 

  209. Blaise D, Olive D, Stoppa AM, Viens P, Pourreau C, Lopez M et al. Hematologic and immunologic effects of the systemic administration of recombinant interleukin-2 after autologous bone marrow transplantation. Blood 1990; 76: 1092–7

    PubMed  CAS  Google Scholar 

  210. Soiffer RJ, Murray C, Cochran K, Cameron C, Wang E, Schow PW et al. Clinical and immunologic effects of prolonged infusion of low-dose recombinant interleukin- 2 after autologous and T-cell-depleted allogeneic bone marrow transplantation. Blood 1992; 79: 517–26

    PubMed  CAS  Google Scholar 

  211. Negrier S, Ranchere JY, Philip I, Merrouche Y, Biron P, Blaise D et al. Intravenous interleukin-2 just after high dose BCNU and autologous bone marrow transplantation. Report of a multicentric French pilot study. Bone Marrow Transplant 1991; 8: 259–64

    Google Scholar 

  212. Sosman JA, Stiff P, Moss SM, Sorokin P, Martone B, Bayer R et al. Pilot trial of interleukin-2 with granulocyte colony-stimulating factor for the mobilization of progenitor cells in advanced breast cancer patients undergoing high-dose chemotherapy: expansion of immune effectors within the stem-cell graft and poststem- cell infusion. J Clin Oncol 2001; 19: 634–44

    PubMed  CAS  Google Scholar 

  213. Toh HC, McAfee SL, Sackstein R, Multani P, Cox BF, Garcia-Carbonero R et al. High-dose cyclophosphamide + carboplatin and interleukin-2 (IL-2) activated autologous stem cell transplantation followed by maintenance IL-2 therapy in metastatic breast carcinoma – a phase II study. Bone Marrow Transplant 2000; 25: 19–24

    Article  PubMed  CAS  Google Scholar 

  214. Klingemann HG, Grigg AP, Wilkie-Boyd K, Barnett MJ, Eaves AC, Reece DE et al. Treatment with recombinant interferon (alpha-2b) early after bone marrow transplantation in patients at high risk for relapse. Blood 1991; 78: 3306–11

    PubMed  CAS  Google Scholar 

  215. Meyers JD, Flournoy N, Sanders JE, McGuffin RW, Newton BA, Fisher LD et al. Prophylactic use of human leukocyte interferon after allogeneic marrow transplantation. Ann Intern Med 1987; 107: 809–16

    PubMed  CAS  Google Scholar 

  216. Ratanatharathorn V, Uberti J, Karanes C, Lum LG, Abella E, Dan ME et al. Phase I study of alpha-interferon augmentation of cyclosporine-induced graft versus host disease in recipients of autologous bone marrow transplantation. Bone Marrow Transplant 1994; 13: 625–30

    PubMed  CAS  Google Scholar 

  217. Kennedy MJ, Vogelsang GB, Jones RJ, Farmer ER, Hess AD, Altomonte V et al. Phase I trial of interferon gamma to potentiate cyclosporine-induced graft-versus-host disease in women undergoing autologous bone marrow transplantation for breast cancer. J Clin Oncol 1994; 12: 249–57

    PubMed  Google Scholar 

  218. Leda M, Ladon D, Pieczonka A, Boruczkowski D, Jolkowska J, Witt M et al. Donor lymphocyte infusion followed by interferon-alpha plus low dose cyclosporine A for modulation of donor CD3 cells activity with monitoring of minimal residual disease and cellular chimerism in a patient with first hematologic relapse of chronic myelogenous leukemia after allogeneic bone marrow transplantation. Leuk Res 2001; 25: 353–7

    Article  PubMed  CAS  Google Scholar 

  219. Trinchieri G. Interleukin-12: a proinflammatory cytokine with immunoregulatory functions that bridge innate resistance and antigen-specific adaptive immunity. Annu Rev Immunol 1995; 13: 251–76

    Article  PubMed  CAS  Google Scholar 

  220. Gately MK, Wolitzky AG, Quinn PM, Chizzonite R. Regulation of human cytolytic lymphocyte responses by interleukin-12. Cell Immunol 1992; 143: 127–42

    Article  PubMed  CAS  Google Scholar 

  221. Trinchieri G. Interleukin-12 and its role in the generation of TH1 cells. Immunol Today 1993; 14: 335–8

    Article  PubMed  CAS  Google Scholar 

  222. Robertson MJ, Soiffer RJ, Wolf SF, Manley TJ, Donahue C, Young D et al. Response of human natural killer (NK) cells to NK cell stimulatory factor (NKSF): cytolytic activity and proliferation of NK cells are differentially regulated by NKSF. J Exp Med 1992; 175: 779–88

    Article  PubMed  CAS  Google Scholar 

  223. Chan SH, Perussia B, Gupta JW, Kobayashi M, Pospisil M, Young HA et al. Induction of interferon gamma production by natural killer cell stimulatory factor: characterization of the responder cells and synergy with other inducers. J Exp Med 1991; 173: 869–79

    Article  PubMed  CAS  Google Scholar 

  224. Brunda MJ, Luistro L, Warrier RR, Wright RB, Hubbard BR, Murphy M et al. Antitumor and antimetastatic activity of interleukin 12 against murine tumors. J Exp Med 1993; 178: 1223–30

    Article  PubMed  CAS  Google Scholar 

  225. Mu J, Zou JP, Yamamoto N, Tsutsui T, Tai XG, Kobayashi M et al. Administration of recombinant interleukin 12 prevents outgrowth of tumor cells metastasizing spon- taneously to lung and lymph nodes. Cancer Res 1995; 55: 4404–8

    PubMed  CAS  Google Scholar 

  226. Atkins MB, Robertson MJ, Gordon M, Lotze MT, DeCoste M, Dubois JS et al. Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 1997; 3: 409–17

    PubMed  CAS  Google Scholar 

  227. Robertson MJ, Pelloso D, Abonour R, Hromas RA, Nelson RP Jr, Wood L et al. Interleukin 12 immunotherapy after autologous stem cell transplantation for hematological malignancies. Clin Cancer Res 2002; 8: 3383–93

    PubMed  CAS  Google Scholar 

  228. Lizee G, Radvanyi LG, Overwijk WW, Hwu P. Immunosuppression in melanoma immunotherapy: potential opportunities for intervention. Clin Cancer Res 2006; 12: 2359s-65s

    Article  PubMed  CAS  Google Scholar 

  229. Finke J, Slanina J, Lange W, Dolken G. Persistence of circulating t(14; 18)-positive cells in long-term remission after radiation therapy for localized-stage follicular lymphoma. J Clin Oncol 1993; 11: 1668–73

    PubMed  CAS  Google Scholar 

  230. Levitsky HI. Augmentation of host immune responses to cancer: overcoming the barrier of tumor antigenspecific T-cell tolerance. Cancer J 2000; 6 Suppl 3: S281–S290

    PubMed  Google Scholar 

  231. Dudley ME, Wunderlich JR, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 2002; 25: 243–51

    Article  PubMed  CAS  Google Scholar 

  232. Gattinoni L, Finkelstein SE, Klebanoff CA, Antony PA, Palmer DC, Spiess PJ et al. Removal of homeostatic cytokine sinks by lymphodepletion enhances the efficacy of adoptively transferred tumor-specific CD8+ T cells. J Exp Med 2005; 202: 907–12

    Article  PubMed  CAS  Google Scholar 

  233. Mule JJ, Jones FR, Hellstrom I, Hellstrom KE. Selective localization of radiolabeled immune lymphocytes into syngeneic tumors. J Immunol 1979; 123: 600–6

    PubMed  CAS  Google Scholar 

  234. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol 2005; 174: 7516–23

    PubMed  CAS  Google Scholar 

  235. Wang LX, Shu S, Plautz GE. Host lymphodepletion augments T cell adoptive immunotherapy through enhanced intratumoral proliferation of effector cells. Cancer Res 2005; 65: 9547–54

    Article  PubMed  CAS  Google Scholar 

  236. Dummer W, Niethammer AG, Baccala R, Lawson BR, Wagner N, Reisfeld RA et al. T cell homeostatic proliferation elicits effective antitumor autoimmunity. J Clin Invest 2002; 110: 185–92

    PubMed  CAS  Google Scholar 

  237. Cho BK, Rao VP, Ge Q, Eisen HN, Chen J. Homeostasisstimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 2000; 192: 549–56

    Article  PubMed  CAS  Google Scholar 

  238. Dudley ME, Wunderlich JR, Yang JC, Hwu P, Schwartzentruber DJ, Topalian SL et al. A phase I study of nonmyeloablative chemotherapy and adoptive transfer of autologous tumor antigen-specific T lymphocytes in patients with metastatic melanoma. J Immunother 2002; 25: 243–51

    Article  PubMed  CAS  Google Scholar 

  239. Dudley ME, Wunderlich JR, Robbins PF, Yang JC, Hwu P, Schwartzentruber DJ et al. Cancer regression and autoimmunity in patients after clonal repopulation with antitumor lymphocytes. Science 2002; 298: 850–4

    Article  PubMed  CAS  Google Scholar 

  240. Powell DJ Jr, Dudley ME, Hogan KA, Wunderlich JR, Rosenberg SA. Adoptive transfer of vaccine-induced peripheral blood mononuclear cells to patients with metastatic melanoma following lymphodepletion. J Immunol 2006; 177: 6527–39

    PubMed  CAS  Google Scholar 

  241. Ruttinger D, van den Engel NK, Winter H, Schlemmer M, Pohla H, Grutzner S et al. Adjuvant therapeutic vaccination in patients with non-small cell lung cancer made lymphopenic and reconstituted with autologous PBMC: first clinical experience and evidence of an immune response. J Transl Med 2007; 5: 43

    Article  PubMed  CAS  Google Scholar 

  242. Gosse ME, Nelson TF. Approval times for supplemental indications for recombinant proteins. Nat Biotechnol 1977; 15: 130–4

    Article  Google Scholar 

  243. Talmadge JE, Phillips H, Schindler J, Tribble H, Pennington R. Systematic preclinical study on the therapeutic properties of recombinant human interleukin 2 for the treatment of metastatic disease. Cancer Res 1987; 47: 5725–32

    PubMed  CAS  Google Scholar 

  244. van Der Auwera P, Platzer E, Xu ZX, Schulz R, Feugeas O, Capdeville R et al. Pharmacodynamics and pharmacokinetics of single doses of subcutaneous pegylated human G-CSF mutant (Ro 25–8315) in healthy volunteers: comparison with single and multiple daily doses of filgrastim. Am J Hematol 2001; 66: 245–51

    Article  Google Scholar 

  245. Jen JF, Glue P, Ezzet F, Chung C, Gupta SK, Jacobs S et al. Population pharmacokinetic analysis of pegylated interferon alfa-2b and interferon alfa-2b in patients with chronic hepatitis C. Clin Pharmacol Ther 2001; 69: 407–21

    Article  PubMed  CAS  Google Scholar 

  246. Tomlinson E. Site-specific proteins. In: Hider RC, Barlow D, editors. Polypeptide and Protein Drugs: Production, Characterization and Formulation.Chichester: Ellis Horwood Ltd.; 1991. p. 251–364

    Google Scholar 

  247. Ehrke MJ, Reino JM, Eppolito C, Mihich E. The effect of PS-K, a protein bound polysaccharide, on immune responses against allogeneic antigens. Int J Immunopharmacol 1983; 5: 35–42

    Article  PubMed  CAS  Google Scholar 

  248. Hehlmann R. Current CML therapy: progress and dilemma. Leukemia 2003; 17: 1010–2

    Article  PubMed  CAS  Google Scholar 

  249. Hansen JA, Gooley TA, Martin PJ, Appelbaum F, Chauncey TR, Clift RA et al. Bone marrow transplants from unrelated donors for patients with chronic myeloid leukemia. N Engl J Med 1998; 338: 962–8

    Article  PubMed  CAS  Google Scholar 

  250. Gratwohl A, Hermans J, Goldman JM, Arcese W, Carreras E, Devergie A et al. Risk assessment for patients with chronic myeloid leukaemia before allogeneic blood or marrow transplantation. Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation. Lancet 1998; 352: 1087–92

    PubMed  CAS  Google Scholar 

  251. Cortes JE, Baccarani M, Guilhot F, Druker BJ, Branford S, Kim DW et al. Phase III, Randomized, Open-Label Study of Daily Imatinib Mesylate 400 mg versus 800 mg in Patients With Newly Diagnosed, Previously Untreated Chronic Myeloid Leukemia in Chronic Phase Using Molecular End Points: Tyrosine Kinase Inhibitor Optimization and Selectivity Study. J Clin Oncol 2010; 28: 424–30

    Article  PubMed  CAS  Google Scholar 

  252. Woodman RC, Erickson RW, Rae J, Jaffe HS, Curnutte JT. Prolonged recombinant interferon-gamma therapy in chronic granulomatous disease: evidence against enhanced neutrophil oxidase activity. Blood 1992; 79: 1558–62

    PubMed  CAS  Google Scholar 

  253. Ahlin A, Larfars G, Elinder G, Palmblad J, Gyllenhammar H. Gamma interferon treatment of patients with chronic granulomatous disease is associated with augmented production of nitric oxide by polymorphonuclear neutrophils. Clin Diagn Lab Immunol 1999; 6: 420–4

    PubMed  CAS  Google Scholar 

  254. Schiff DE, Rae J, Martin TR, Davis BH, Curnutte JT. Increased phagocyte Fc gammaRI expression and improved Fc gamma- receptor-mediated phagocytosis after in vivo recombinant human interferon-gamma treatment of normal human subjects. Blood 1997; 90: 3187–94

    PubMed  CAS  Google Scholar 

  255. Faivre S, Demetri G, Sargent W, Raymond E. Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 2007; 6: 734–45

    Article  PubMed  CAS  Google Scholar 

  256. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 2007; 25: 884–96

    Article  PubMed  CAS  Google Scholar 

  257. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Oudard S et al. Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 2009; 27: 3573–4

    Article  Google Scholar 

  258. Hutson TE, Figlin RA. Evolving role of novel targeted agents in renal cell carcinoma. Oncology (Williston Park) 2007; 21: 1175–80

    Google Scholar 

  259. Motzer RJ, Hutson TE, Tomczak P, Michaelson MD, Bukowski RM, Rixe O et al. Sunitinib versus interferon (IFN)-alfa in metastatic renal cell carcinoma. N Engl J Med 2007; 356: 115–24

    Article  PubMed  CAS  Google Scholar 

  260. Abe F, Younos I, Westphal S, Samson H, Scholar E, Dafferner A et al. Therapeutic activity of sunitinib for Her2/neu induced mammary cancer in FVB mice. Int Immunopharmacol 2009

    Google Scholar 

  261. Walsh G. Biopharmaceutical benchmarks--2003. Nat Biotechnol 2003; 21: 865–70

    Article  PubMed  CAS  Google Scholar 

  262. Welte T, Zhang SS, Wang T, Zhang Z, Hesslein DG, Yin Z et al. STAT3 deletion during hematopoiesis causes Crohn’s disease-like pathogenesis and lethality: a critical role of STAT3 in innate immunity. Proc Natl Acad Sci USA 2003; 100: 1879–84

    Article  PubMed  CAS  Google Scholar 

  263. Wang T, Niu G, Kortylewski M, Burdelya L, Shain K, Zhang S et al. Regulation of the innate and adaptive immune responses by Stat-3 signaling in tumor cells. Nat Med 2004; 10: 48–54

    Article  PubMed  CAS  Google Scholar 

  264. Nefedova Y, Huang M, Kusmartsev S, Bhattacharya R, Cheng P, Salup R et al. Hyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancer. J Immunol 2004; 172: 464–74

    PubMed  CAS  Google Scholar 

  265. Hock H, Hamblen MJ, Rooke HM, Traver D, Bronson RT, Cameron S et al. Intrinsic requirement for zinc finger transcription factor Gfi-1 in neutrophil differentiation. Immunity 2003; 18: 109–20

    Article  PubMed  CAS  Google Scholar 

  266. Passegue E, Jochum W, Schorpp-Kistner M, Mohle- Steinlein U, Wagner EF. Chronic myeloid leukemia with increased granulocyte progenitors in mice lacking junB expression in the myeloid lineage. Cell 2001; 104: 21–32

    CAS  Google Scholar 

  267. Ghansah T, Paraiso KH, Highfill S, Desponts C, May S, McIntosh JK et al. Expansion of myeloid suppressor cells in SHIP-deficient mice represses allogeneic T cell responses. J Immunol 2004; 173: 7324–30

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Talmadge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Birkhäuser Basel

About this chapter

Cite this chapter

Talmadge, J.E. (2011). C6 Immunostimulants in cancer therapy. In: Nijkamp, F., Parnham, M. (eds) Principles of Immunopharmacology. Birkhäuser Basel. https://doi.org/10.1007/978-3-0346-0136-8_21

Download citation

Publish with us

Policies and ethics