Skip to main content

Towards Elephants Intelligent Monitoring in Zakouma National Park, Chad

  • Conference paper
  • First Online:
Image Processing, Computer Vision, and Pattern Recognition and Information and Knowledge Engineering (CSCE 2024)

Abstract

This paper proposes an approach based on artificial intelligence to open up new prospects for the protection of endangered species in Zakouma National Park, Chad. This paper analyzes a few major algorithm models used in the detection or segmentation process to determine their accuracy when applied to wildlife. An assessment and a benchmarking were carried out on detection and segmentation algorithms such as Faster R-CNN, Mask R-CNN, YOLO V7, YOLO V8, and YOLO NAS. The process of tracking wild animals is handled by the ByteTrack library. A unique ID is assigned to each animal, enabling it to be identified individually after the detection and recognition process. The counting approach derives from the individual animal identification mechanism: when an animal, recognized by YOLO 8, is first detected during the counting process, then the species-specific counter, initialized at 0, is incremented by one unit. The YOLO 8 algorithm yields the most reliable precision rates, and is therefore chosen for animal detection and identification.

H. D. Oumar, Y. Azza, N. Alladoumbaye—Contributing authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  2. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  3. Stoianov, I.: Connectionist lexical processing. PhD thesis, University Library Groningen][Host] (2001)

    Google Scholar 

  4. McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)

    Article  MathSciNet  Google Scholar 

  5. Shapiro, S.C.: The turing test and the economist. ACM SIGART Bull. 3(4), 10–11 (1992)

    Article  Google Scholar 

  6. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  7. Krenker, A., Bešter, J., Kos, A.: Introduction to the artificial neural networks. In: Artificial Neural Networks: Methodological Advances and Biomedical Applications, pp. 1–18. InTech (2011)

    Google Scholar 

  8. Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)

    Google Scholar 

  9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  10. Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. Proc. IEEE 111, 257–276 (2023)

    Article  Google Scholar 

  11. Yu, X., Wang, J., Kays, R., Jansen, P.A., Wang, T., Huang, T.: Automated identification of animal species in camera trap images. EURASIP J. Image Video Process. 2013(1), 1–10 (2013). https://doi.org/10.1186/1687-5281-2013-52

    Article  Google Scholar 

  12. Burghardt, T., Calic, J.: Real-time face detection and tracking of animals. In: 2006 8th Seminar on Neural Network Applications in Electrical Engineering, pp. 27–32. IEEE (2006)

    Google Scholar 

  13. Banupriya, N., Saranya, S., Swaminathan, R., Harikumar, S., Palanisamy, S.: Animal detection using deep learning algorithm. J. Crit. Rev 7(1), 434–439 (2020)

    Google Scholar 

  14. Sindhu, V., Alam, A., Thapa, P.: Wild animal detection and warning system using machine learning and deep learning algorithms (2021)

    Google Scholar 

  15. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)

    Article  Google Scholar 

  16. Brown, L., Schormann, D.: Poacher detection and wildlife counting system. In: Proceedings of Southern Africa Telecommunications on Network Application Conference (SATNAC), pp. 1–6 (2019)

    Google Scholar 

  17. Chen, R., Little, R., Mihaylova, L., Delahay, R., Cox, R.: Wildlife surveillance using deep learning methods. Ecol. Evol. 9(17), 9453–9466 (2019)

    Article  Google Scholar 

  18. Gat, A., Gaikwad, H., Giri, R., Sardey, M.P., Gajare, M.P.: Animal detector system for forest monitoring using opencv and raspberry-pi (2020)

    Google Scholar 

  19. Singh, P., Lindshield, S.M., Zhu, F., Reibman, A.R.: Animal localization in camera-trap images with complex backgrounds. In: 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 66–69. IEEE (2020)

    Google Scholar 

  20. Lei, J., Gao, S., Rasool, M.A., Fan, R., Jia, Y., Lei, G.: Optimized small waterbird detection method using surveillance videos based on yolov7. Animals 13(12), 1929 (2023)

    Article  Google Scholar 

  21. Gupta, S., Mohan, N., Nayak, P., Nagaraju, K.C., Karanam, M.: Deep vision-based surveillance system to prevent train–elephant collisions. Soft Comput., 1–14 (2022)

    Google Scholar 

  22. Natarajan, B., Elakkiya, R., Bhuvaneswari, R., Saleem, K., Chaudhary, D., Samsudeen, S.H.: Creating alert messages based on wild animal activity detection using hybrid deep neural networks. IEEE Access 11, 67308–67321 (2023)

    Article  Google Scholar 

  23. Himawan, I., Towsey, M., Law, B., Roe, P.: Deep learning techniques for koala activity detection. In: INTERSPEECH, pp. 2107–2111 (2018)

    Google Scholar 

  24. Cheema, G.S., Anand, S.: Automatic detection and recognition of individuals in patterned species. In: Altun, Y., et al. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 27–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71273-4_3

    Chapter  Google Scholar 

  25. Arshad, B., Barthelemy, J., Pilton, E., Perez, P.: Where is my deer?-wildlife tracking and counting via edge computing and deep learning. In: 2020 IEEE SENSORS, pp. 1–4 (2020)

    Google Scholar 

  26. Dutta, P.: A deep learning approach for animal breed classification-sheep. Int. J. Res. Appl. Sci. Eng. Technol. 9(5), 10–22214 (2021)

    Article  Google Scholar 

  27. Pan, Y., Jin, H., Gao, J., Rauf, H.T.: Identification of buffalo breeds using self-activated-based improved convolutional neural networks. Agriculture 12(9), 1386 (2022)

    Article  Google Scholar 

  28. El Abbadi, N.K., Alsaadi, E.M.T.A.: An automated vertebrate animals classification using deep convolution neural networks. In: 2020 International Conference on Computer Science and Software Engineering (CSASE), pp. 72–77. IEEE (2020)

    Google Scholar 

  29. Chen, G., Han, T.X., He, Z., Kays, R., Forrester, T.: Deep convolutional neural network based species recognition for wild animal monitoring. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 858–862. IEEE (2014)

    Google Scholar 

  30. He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR (2017). 1703.06870

  31. Sarwar, F., Griffin, A., Periasamy, P., Portas, K., Law, J.: Detecting and counting sheep with a convolutional neural network. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2018)

    Google Scholar 

  32. Simões, F., Bouveyron, C., Precioso, F.: Deepwild: wildlife identification, localisation and estimation on camera trap videos using deep learning. Eco. Inf. 75, 102095 (2023)

    Article  Google Scholar 

  33. Schneider, S., Taylor, G.W., Kremer, S.: Deep learning object detection methods for ecological camera trap data. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 321–328. IEEE (2018)

    Google Scholar 

  34. Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Packer, C., Clune, J.: Automatically identifying wild animals in camera trap images with deep learning. Proc. Natl. Acad. Sci. 115, E5716–E5725 (2018)

    Article  Google Scholar 

  35. Yudin, D., Sotnikov, A., Krishtopik, A.: Detection of big animals on images with road scenes using deep learning. In: 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI), pp. 100–1003. IEEE (2019)

    Google Scholar 

  36. Rančić, K., et al.: Animal detection and counting from uav images using convolutional neural networks. Drones 7(3), 179 (2023)

    Article  Google Scholar 

  37. Vishwas, J., Raj, S.P., Anand, M., Puneeth, S., Prajwal, P., et al.: Cnn based animals recognition using advanced yolo v5 and darknet. Int. J. Res. Eng. Sci. Manag. 5(6), 229–231 (2022)

    Google Scholar 

  38. Li, E., Wang, Q., Zhang, J., Zhang, W., Mo, H., Wu, Y.: Fish detection under occlusion using modified you only look once v8 integrating real-time detection transformer features. Appl. Sci. 13(23), 12645 (2023)

    Article  Google Scholar 

  39. Siriani, A.L.R., Miranda, I.B.D.C., Mehdizadeh, S.A., Pereira, D.F.: Chicken tracking and individual bird activity monitoring using the bot-sort algorithm. AgriEngineering 5(4), 1677–1693 (2023)

    Google Scholar 

  40. Nguyen, H., et al.: Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring. In: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 40–49. IEEE (2017)

    Google Scholar 

  41. Jamil, S., Abbas, M.S., Habib, F., Umair, M., Khan, M.J., et al.: Deep learning and computer vision-based a novel framework for himalayan bear, marco polo sheep and snow leopard detection. In: 2020 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–6. IEEE (2020)

    Google Scholar 

  42. Sheikh, N.: Identification and classification of wildlife from camera-trap images using machine learning and computer vision. PhD thesis, Dublin, National College of Ireland (2020)

    Google Scholar 

  43. Villa, A.G., Salazar, A., Vargas, F.: Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks. Eco. Inf. 41, 24–32 (2017)

    Article  Google Scholar 

  44. Ravikumar, S., Vinod, D., Ramesh, G., Pulari, S.R., Mathi, S.: A layered approach to detect elephants in live surveillance video streams using convolution neural networks. J. Intell. Fuzzy Syst. 38(5), 6291–6298 (2020)

    Article  Google Scholar 

  45. Okafor, E., et al.: Comparative study between deep learning and bag of visual words for wild-animal recognition. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)

    Google Scholar 

  46. Song, Y., Wang, H., Li, S., Xu, F., Liu, J.: Cnn based wildlife recognition with super-pixel segmentation for ecological surveillance. In: 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 132–137 (2018). IEEE

    Google Scholar 

  47. CK, S., et al.: Automated wildlife monitoring using deep learning. In: Proceedings of the International Conference on Systems, Energy & Environment (ICSEE) (2019)

    Google Scholar 

  48. Ibraheam, M., Gebali, F., Li, K.F., Sielecki, L.: Animal species recognition using deep learning. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020. AISC, vol. 1151, pp. 523–532. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44041-1_47

    Chapter  Google Scholar 

  49. Norouzzadeh, M.S., et al.: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115(25), 5716–5725 (2018)

    Article  Google Scholar 

  50. Norouzzadeh, M.S., Morris, D., Beery, S., Joshi, N., Jojic, N., Clune, J.: A deep active learning system for species identification and counting in camera trap images. Methods Ecol. Evol. 12(1), 150–161 (2021)

    Article  Google Scholar 

  51. Azizi, E., Zaman, L.: Deep learning pet identification using face and body. Information 14(5), 278 (2023)

    Article  Google Scholar 

  52. Ibraheam, M., Li, K.F., Gebali, F.: An accurate and fast animal species detection system for embedded devices. IEEE Access 11, 23462–23473 (2023)

    Article  Google Scholar 

  53. Alsaadi, E.M.T.A., El Abbadi, N.K.: An automated mammals detection based on ssd-mobile net. In: Journal of Physics: Conference Series, vol. 1879, p. 022086. IOP Publishing (2021)

    Google Scholar 

  54. Padubidri, C., Kamilaris, A., Karatsiolis, S., Kamminga, J.: Counting sea lions and elephants from aerial photography using deep learning with density maps. Animal Biotelemetry 9(1), 1–10 (2021)

    Article  Google Scholar 

  55. Körschens, M., Barz, B., Denzler, J.: Towards automatic identification of elephants in the wild. arXiv preprint arXiv:1812.04418 (2018)

  56. Sayagavi, A.V., Sudarshan, T., Ravoor, P.C.: Deep learning methods for animal recognition and tracking to detect intrusions. In: Senjyu, T., Mahalle, P.N., Perumal, T., Joshi, A. (eds.) ICTIS 2020. SIST, vol. 196, pp. 617–626. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7062-9_62

    Chapter  Google Scholar 

  57. Zhang, Y., et al.: Bytetrack: multi-object tracking by associating every detection box (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmat Daouda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oumar, H.D., Daouda, A., Azza, Y., Alladoumbaye, N. (2025). Towards Elephants Intelligent Monitoring in Zakouma National Park, Chad. In: Deligiannidis, L., Ghareh Mohammadi, F., Shenavarmasouleh, F., Amirian, S., Arabnia, H.R. (eds) Image Processing, Computer Vision, and Pattern Recognition and Information and Knowledge Engineering. CSCE 2024. Communications in Computer and Information Science, vol 2262. Springer, Cham. https://doi.org/10.1007/978-3-031-85933-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-85933-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-85932-8

  • Online ISBN: 978-3-031-85933-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics