Abstract
This paper proposes an approach based on artificial intelligence to open up new prospects for the protection of endangered species in Zakouma National Park, Chad. This paper analyzes a few major algorithm models used in the detection or segmentation process to determine their accuracy when applied to wildlife. An assessment and a benchmarking were carried out on detection and segmentation algorithms such as Faster R-CNN, Mask R-CNN, YOLO V7, YOLO V8, and YOLO NAS. The process of tracking wild animals is handled by the ByteTrack library. A unique ID is assigned to each animal, enabling it to be identified individually after the detection and recognition process. The counting approach derives from the individual animal identification mechanism: when an animal, recognized by YOLO 8, is first detected during the counting process, then the species-specific counter, initialized at 0, is incremented by one unit. The YOLO 8 algorithm yields the most reliable precision rates, and is therefore chosen for animal detection and identification.
H. D. Oumar, Y. Azza, N. Alladoumbaye—Contributing authors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
Stoianov, I.: Connectionist lexical processing. PhD thesis, University Library Groningen][Host] (2001)
McCulloch, W.S., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5, 115–133 (1943)
Shapiro, S.C.: The turing test and the economist. ACM SIGART Bull. 3(4), 10–11 (1992)
Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)
Krenker, A., Bešter, J., Kos, A.: Introduction to the artificial neural networks. In: Artificial Neural Networks: Methodological Advances and Biomedical Applications, pp. 1–18. InTech (2011)
Sharif Razavian, A., Azizpour, H., Sullivan, J., Carlsson, S.: Cnn features off-the-shelf: an astounding baseline for recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 806–813 (2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Zou, Z., Chen, K., Shi, Z., Guo, Y., Ye, J.: Object detection in 20 years: a survey. Proc. IEEE 111, 257–276 (2023)
Yu, X., Wang, J., Kays, R., Jansen, P.A., Wang, T., Huang, T.: Automated identification of animal species in camera trap images. EURASIP J. Image Video Process. 2013(1), 1–10 (2013). https://doi.org/10.1186/1687-5281-2013-52
Burghardt, T., Calic, J.: Real-time face detection and tracking of animals. In: 2006 8th Seminar on Neural Network Applications in Electrical Engineering, pp. 27–32. IEEE (2006)
Banupriya, N., Saranya, S., Swaminathan, R., Harikumar, S., Palanisamy, S.: Animal detection using deep learning algorithm. J. Crit. Rev 7(1), 434–439 (2020)
Sindhu, V., Alam, A., Thapa, P.: Wild animal detection and warning system using machine learning and deep learning algorithms (2021)
Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2009)
Brown, L., Schormann, D.: Poacher detection and wildlife counting system. In: Proceedings of Southern Africa Telecommunications on Network Application Conference (SATNAC), pp. 1–6 (2019)
Chen, R., Little, R., Mihaylova, L., Delahay, R., Cox, R.: Wildlife surveillance using deep learning methods. Ecol. Evol. 9(17), 9453–9466 (2019)
Gat, A., Gaikwad, H., Giri, R., Sardey, M.P., Gajare, M.P.: Animal detector system for forest monitoring using opencv and raspberry-pi (2020)
Singh, P., Lindshield, S.M., Zhu, F., Reibman, A.R.: Animal localization in camera-trap images with complex backgrounds. In: 2020 IEEE Southwest Symposium on Image Analysis and Interpretation (SSIAI), pp. 66–69. IEEE (2020)
Lei, J., Gao, S., Rasool, M.A., Fan, R., Jia, Y., Lei, G.: Optimized small waterbird detection method using surveillance videos based on yolov7. Animals 13(12), 1929 (2023)
Gupta, S., Mohan, N., Nayak, P., Nagaraju, K.C., Karanam, M.: Deep vision-based surveillance system to prevent train–elephant collisions. Soft Comput., 1–14 (2022)
Natarajan, B., Elakkiya, R., Bhuvaneswari, R., Saleem, K., Chaudhary, D., Samsudeen, S.H.: Creating alert messages based on wild animal activity detection using hybrid deep neural networks. IEEE Access 11, 67308–67321 (2023)
Himawan, I., Towsey, M., Law, B., Roe, P.: Deep learning techniques for koala activity detection. In: INTERSPEECH, pp. 2107–2111 (2018)
Cheema, G.S., Anand, S.: Automatic detection and recognition of individuals in patterned species. In: Altun, Y., et al. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10536, pp. 27–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71273-4_3
Arshad, B., Barthelemy, J., Pilton, E., Perez, P.: Where is my deer?-wildlife tracking and counting via edge computing and deep learning. In: 2020 IEEE SENSORS, pp. 1–4 (2020)
Dutta, P.: A deep learning approach for animal breed classification-sheep. Int. J. Res. Appl. Sci. Eng. Technol. 9(5), 10–22214 (2021)
Pan, Y., Jin, H., Gao, J., Rauf, H.T.: Identification of buffalo breeds using self-activated-based improved convolutional neural networks. Agriculture 12(9), 1386 (2022)
El Abbadi, N.K., Alsaadi, E.M.T.A.: An automated vertebrate animals classification using deep convolution neural networks. In: 2020 International Conference on Computer Science and Software Engineering (CSASE), pp. 72–77. IEEE (2020)
Chen, G., Han, T.X., He, Z., Kays, R., Forrester, T.: Deep convolutional neural network based species recognition for wild animal monitoring. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 858–862. IEEE (2014)
He, K., Gkioxari, G., Dollár, P., Girshick, R.B.: Mask R-CNN. CoRR (2017). 1703.06870
Sarwar, F., Griffin, A., Periasamy, P., Portas, K., Law, J.: Detecting and counting sheep with a convolutional neural network. In: 2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE (2018)
Simões, F., Bouveyron, C., Precioso, F.: Deepwild: wildlife identification, localisation and estimation on camera trap videos using deep learning. Eco. Inf. 75, 102095 (2023)
Schneider, S., Taylor, G.W., Kremer, S.: Deep learning object detection methods for ecological camera trap data. In: 2018 15th Conference on Computer and Robot Vision (CRV), pp. 321–328. IEEE (2018)
Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Packer, C., Clune, J.: Automatically identifying wild animals in camera trap images with deep learning. Proc. Natl. Acad. Sci. 115, E5716–E5725 (2018)
Yudin, D., Sotnikov, A., Krishtopik, A.: Detection of big animals on images with road scenes using deep learning. In: 2019 International Conference on Artificial Intelligence: Applications and Innovations (IC-AIAI), pp. 100–1003. IEEE (2019)
Rančić, K., et al.: Animal detection and counting from uav images using convolutional neural networks. Drones 7(3), 179 (2023)
Vishwas, J., Raj, S.P., Anand, M., Puneeth, S., Prajwal, P., et al.: Cnn based animals recognition using advanced yolo v5 and darknet. Int. J. Res. Eng. Sci. Manag. 5(6), 229–231 (2022)
Li, E., Wang, Q., Zhang, J., Zhang, W., Mo, H., Wu, Y.: Fish detection under occlusion using modified you only look once v8 integrating real-time detection transformer features. Appl. Sci. 13(23), 12645 (2023)
Siriani, A.L.R., Miranda, I.B.D.C., Mehdizadeh, S.A., Pereira, D.F.: Chicken tracking and individual bird activity monitoring using the bot-sort algorithm. AgriEngineering 5(4), 1677–1693 (2023)
Nguyen, H., et al.: Animal recognition and identification with deep convolutional neural networks for automated wildlife monitoring. In: 2017 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 40–49. IEEE (2017)
Jamil, S., Abbas, M.S., Habib, F., Umair, M., Khan, M.J., et al.: Deep learning and computer vision-based a novel framework for himalayan bear, marco polo sheep and snow leopard detection. In: 2020 International Conference on Information Science and Communication Technology (ICISCT), pp. 1–6. IEEE (2020)
Sheikh, N.: Identification and classification of wildlife from camera-trap images using machine learning and computer vision. PhD thesis, Dublin, National College of Ireland (2020)
Villa, A.G., Salazar, A., Vargas, F.: Towards automatic wild animal monitoring: identification of animal species in camera-trap images using very deep convolutional neural networks. Eco. Inf. 41, 24–32 (2017)
Ravikumar, S., Vinod, D., Ramesh, G., Pulari, S.R., Mathi, S.: A layered approach to detect elephants in live surveillance video streams using convolution neural networks. J. Intell. Fuzzy Syst. 38(5), 6291–6298 (2020)
Okafor, E., et al.: Comparative study between deep learning and bag of visual words for wild-animal recognition. In: 2016 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2016)
Song, Y., Wang, H., Li, S., Xu, F., Liu, J.: Cnn based wildlife recognition with super-pixel segmentation for ecological surveillance. In: 2018 IEEE 8th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), pp. 132–137 (2018). IEEE
CK, S., et al.: Automated wildlife monitoring using deep learning. In: Proceedings of the International Conference on Systems, Energy & Environment (ICSEE) (2019)
Ibraheam, M., Gebali, F., Li, K.F., Sielecki, L.: Animal species recognition using deep learning. In: Barolli, L., Amato, F., Moscato, F., Enokido, T., Takizawa, M. (eds.) AINA 2020. AISC, vol. 1151, pp. 523–532. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44041-1_47
Norouzzadeh, M.S., et al.: Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115(25), 5716–5725 (2018)
Norouzzadeh, M.S., Morris, D., Beery, S., Joshi, N., Jojic, N., Clune, J.: A deep active learning system for species identification and counting in camera trap images. Methods Ecol. Evol. 12(1), 150–161 (2021)
Azizi, E., Zaman, L.: Deep learning pet identification using face and body. Information 14(5), 278 (2023)
Ibraheam, M., Li, K.F., Gebali, F.: An accurate and fast animal species detection system for embedded devices. IEEE Access 11, 23462–23473 (2023)
Alsaadi, E.M.T.A., El Abbadi, N.K.: An automated mammals detection based on ssd-mobile net. In: Journal of Physics: Conference Series, vol. 1879, p. 022086. IOP Publishing (2021)
Padubidri, C., Kamilaris, A., Karatsiolis, S., Kamminga, J.: Counting sea lions and elephants from aerial photography using deep learning with density maps. Animal Biotelemetry 9(1), 1–10 (2021)
Körschens, M., Barz, B., Denzler, J.: Towards automatic identification of elephants in the wild. arXiv preprint arXiv:1812.04418 (2018)
Sayagavi, A.V., Sudarshan, T., Ravoor, P.C.: Deep learning methods for animal recognition and tracking to detect intrusions. In: Senjyu, T., Mahalle, P.N., Perumal, T., Joshi, A. (eds.) ICTIS 2020. SIST, vol. 196, pp. 617–626. Springer, Singapore (2021). https://doi.org/10.1007/978-981-15-7062-9_62
Zhang, Y., et al.: Bytetrack: multi-object tracking by associating every detection box (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Oumar, H.D., Daouda, A., Azza, Y., Alladoumbaye, N. (2025). Towards Elephants Intelligent Monitoring in Zakouma National Park, Chad. In: Deligiannidis, L., Ghareh Mohammadi, F., Shenavarmasouleh, F., Amirian, S., Arabnia, H.R. (eds) Image Processing, Computer Vision, and Pattern Recognition and Information and Knowledge Engineering. CSCE 2024. Communications in Computer and Information Science, vol 2262. Springer, Cham. https://doi.org/10.1007/978-3-031-85933-5_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-85933-5_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-85932-8
Online ISBN: 978-3-031-85933-5
eBook Packages: Computer ScienceComputer Science (R0)