Skip to main content

McGrids: Monte Carlo-Driven Adaptive Grids for Iso-Surface Extraction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 (ECCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15115))

Included in the following conference series:

  • 390 Accesses

Abstract

Iso-surface extraction from an implicit field is a fundamental process in various applications of computer vision and graphics. When dealing with geometric shapes with complicated geometric details, many existing algorithms suffer from high computational costs and memory usage. This paper proposes McGrids, a novel approach to improve the efficiency of iso-surface extraction. The key idea is to construct adaptive grids for iso-surface extraction rather than using a simple uniform grid as prior art does. Specifically, we formulate the problem of constructing adaptive grids as a probability sampling problem, which is then solved by Monte Carlo process. We demonstrate McGrids’ capability with extensive experiments from both analytical SDFs computed from surface meshes and learned implicit fields from real multiview images. The experiment results show that our McGrids can significantly reduce the number of implicit field queries, resulting in significant memory reduction, while producing high-quality meshes with rich geometric details.

D. Ren and H. Shi—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amenta, N., Bern, M.: Surface reconstruction by voronoi filtering. Discrete Comput. Geom. 22 (1999)

    Google Scholar 

  2. Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR, pp. 5460–5469 (2021)

    Google Scholar 

  3. Boissonnat, J.D., Oudot, S.: Provably good sampling and meshing of surfaces. Graph. Models 67(5), 405–451 (2005)

    Article  Google Scholar 

  4. Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1–49 (1998)

    Article  MathSciNet  Google Scholar 

  5. Chen, D., Zhang, P., Feldmann, I., Schreer, O., Eisert, P.: Recovering fine details for neural implicit surface reconstruction (2022)

    Google Scholar 

  6. Chen, Z., Tagliasacchi, A., Funkhouser, T., Zhang, H.: Neural dual contouring. ACM TOG 41(4), 1–13 (2022)

    Google Scholar 

  7. Chen, Z., Zhang, H.: Neural marching cubes. ACM TOG 40(6), 1–15 (2021)

    Article  MathSciNet  Google Scholar 

  8. Cheng, S.W., Dey, T., Ramos, E., Ray, T.: Sampling and meshing a surface with guaranteed topology and geometry. SIAM J. Comput. 37 (2007)

    Google Scholar 

  9. Chew, L.P.: Guaranteed-quality mesh generation for curved surfaces. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, SCG 1993. Association for Computing Machinery (1993)

    Google Scholar 

  10. Ciarlet, P.: The finite element method for elliptic problems. Classics Appl. Math. 40 (2002)

    Google Scholar 

  11. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (1996)

    Google Scholar 

  12. Doi, A., Koide, A.: An efficient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans. Inf. Syst. 74, 214–224 (1991)

    Google Scholar 

  13. Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44, 102–119 (2006)

    Article  MathSciNet  Google Scholar 

  14. Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algorithms. Soc. Industr. Appl. Math. 41(4), 637–676 (1999)

    MathSciNet  Google Scholar 

  15. Field, D.: Qualitative measures for initial meshes. Int. J. Numer. Meth. Eng. 47, 887–906 (2000)

    Article  Google Scholar 

  16. Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp. 3789–3799. PMLR (2020)

    Google Scholar 

  17. Hilton, A., Stoddart, A., Illingworth, J., Windeatt, T.: Marching triangles: range image fusion for complex object modelling. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 2 (1996)

    Google Scholar 

  18. Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM TOG 21(3) (2002)

    Google Scholar 

  19. Kazhdan, M., Klein, A., Dalal, K., Hoppe, H.: Unconstrained isosurface extraction on arbitrary octrees (2007)

    Google Scholar 

  20. Liao, Y., Donné, S., Geiger, A.: Deep marching cubes: learning explicit surface representations. In: CVPR, pp. 2916–2925 (2018)

    Google Scholar 

  21. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.M., Lu, L., Yang, C.: On centroidal Voronoi tessellation-energy smoothness and fast computation. ACM TOG 28(4), 1–17 (2009)

    Article  Google Scholar 

  22. Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (1987)

    Google Scholar 

  23. Marschner, Z., Zhang, P., Palmer, D., Solomon, J.: Sum-of-squares geometry processing. ACM TOG 40(6), 1–13 (2021)

    Article  Google Scholar 

  24. Maruani, N., Klokov, R., Ovsjanikov, M., Alliez, P., Desbrun, M.: VoroMesh: learning watertight surface meshes with voronoi diagrams (2023)

    Google Scholar 

  25. Mehta, I., Chandraker, M., Ramamoorthi, R.: A level set theory for neural implicit evolution under explicit flows. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13662, pp. 711–729. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20086-1_41

    Chapter  Google Scholar 

  26. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)

    Google Scholar 

  27. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  28. Mullen, T.: Mastering Blender. Wiley, Hoboken (2011)

    Google Scholar 

  29. Nabizadeh, M.S., Ramamoorthi, R., Chern, A.: Kelvin transformations for simulations on infinite domains. ACM TOG 40(4), 1–15 (2021)

    Article  Google Scholar 

  30. Nielson, G.: Dual marching cubes. In: IEEE Visualization 2004, pp. 489–496 (2004)

    Google Scholar 

  31. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR (2019)

    Google Scholar 

  32. Peng, S., Niemeyer, M., Mescheder, L.M., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. ArXiv abs/2003.04618 (2020)

    Google Scholar 

  33. Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: DreamFusion: text-to-3D using 2D diffusion. ArXiv abs/2209.14988 (2022)

    Google Scholar 

  34. Sawhney, R., Crane, K.: Monte Carlo geometry processing: a grid-free approach to PDE-based methods on volumetric domains. ACM TOG 39(4) (2020)

    Google Scholar 

  35. Sawhney, R., Seyb, D., Jarosz, W., Crane, K.: Grid-free Monte Carlo for PDEs with spatially varying coefficients. ACM TOG 41(4) (2022)

    Google Scholar 

  36. Schreiner, J., Scheidegger, C., Silva, C.: High-quality extraction of isosurfaces from regular and irregular grids. IEEE Trans. Vis. Comput. Graph. 12, 1205–1212 (2006)

    Article  Google Scholar 

  37. Shen, T., Gao, J., Yin, K., Liu, M.Y., Fidler, S.: Deep marching tetrahedra: a hybrid representation for high-resolution 3D shape synthesis. In: NeurIPS (2021)

    Google Scholar 

  38. Shen, T., et al.: Flexible isosurface extraction for gradient-based mesh optimization. ACM TOG 42(4) (2023)

    Google Scholar 

  39. Shewchuk, J.: What is a good linear element? - interpolation, conditioning, and quality measures (2002)

    Google Scholar 

  40. Sima, C., et al.: Scene as occupancy. In: ICCV (2023)

    Google Scholar 

  41. Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes (2021)

    Google Scholar 

  42. Thingiverse.com: Digital designs for physical objects

    Google Scholar 

  43. Wang, L., Hétroy-Wheeler, F., Boyer, E.: On volumetric shape reconstruction from implicit forms. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 173–188. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_11

    Chapter  Google Scholar 

  44. Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: NeurIPS (2021)

    Google Scholar 

  45. Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. In: Thirty-Fifth Conference on Neural Information Processing Systems (2021)

    Google Scholar 

  46. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: NeRF++: analyzing and improving neural radiance fields. arXiv:2010.07492 (2020)

  47. Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv preprint arXiv:1801.09847 (2018)

Download references

Acknowledgements

This work is supported by MOE AcRF Tier 1 Grant of Singapore (RG12/22), and also by the RIE2025 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) (Award I2301E0026), administered by A*STAR, as well as supported by Alibaba Group and NTU Singapore. Daxuan Ren was also partially supported by Autodesk Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daxuan Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ren, D., Shi, H., Zheng, J., Cai, J. (2025). McGrids: Monte Carlo-Driven Adaptive Grids for Iso-Surface Extraction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15115. Springer, Cham. https://doi.org/10.1007/978-3-031-72998-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-72998-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-72997-3

  • Online ISBN: 978-3-031-72998-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics