Abstract
Iso-surface extraction from an implicit field is a fundamental process in various applications of computer vision and graphics. When dealing with geometric shapes with complicated geometric details, many existing algorithms suffer from high computational costs and memory usage. This paper proposes McGrids, a novel approach to improve the efficiency of iso-surface extraction. The key idea is to construct adaptive grids for iso-surface extraction rather than using a simple uniform grid as prior art does. Specifically, we formulate the problem of constructing adaptive grids as a probability sampling problem, which is then solved by Monte Carlo process. We demonstrate McGrids’ capability with extensive experiments from both analytical SDFs computed from surface meshes and learned implicit fields from real multiview images. The experiment results show that our McGrids can significantly reduce the number of implicit field queries, resulting in significant memory reduction, while producing high-quality meshes with rich geometric details.
D. Ren and H. Shi—These authors contributed equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amenta, N., Bern, M.: Surface reconstruction by voronoi filtering. Discrete Comput. Geom. 22 (1999)
Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P., Hedman, P.: Mip-NeRF 360: unbounded anti-aliased neural radiance fields. In: CVPR, pp. 5460–5469 (2021)
Boissonnat, J.D., Oudot, S.: Provably good sampling and meshing of surfaces. Graph. Models 67(5), 405–451 (2005)
Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1–49 (1998)
Chen, D., Zhang, P., Feldmann, I., Schreer, O., Eisert, P.: Recovering fine details for neural implicit surface reconstruction (2022)
Chen, Z., Tagliasacchi, A., Funkhouser, T., Zhang, H.: Neural dual contouring. ACM TOG 41(4), 1–13 (2022)
Chen, Z., Zhang, H.: Neural marching cubes. ACM TOG 40(6), 1–15 (2021)
Cheng, S.W., Dey, T., Ramos, E., Ray, T.: Sampling and meshing a surface with guaranteed topology and geometry. SIAM J. Comput. 37 (2007)
Chew, L.P.: Guaranteed-quality mesh generation for curved surfaces. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, SCG 1993. Association for Computing Machinery (1993)
Ciarlet, P.: The finite element method for elliptic problems. Classics Appl. Math. 40 (2002)
Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (1996)
Doi, A., Koide, A.: An efficient method of triangulating equi-valued surfaces by using tetrahedral cells. IEICE Trans. Inf. Syst. 74, 214–224 (1991)
Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44, 102–119 (2006)
Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algorithms. Soc. Industr. Appl. Math. 41(4), 637–676 (1999)
Field, D.: Qualitative measures for initial meshes. Int. J. Numer. Meth. Eng. 47, 887–906 (2000)
Gropp, A., Yariv, L., Haim, N., Atzmon, M., Lipman, Y.: Implicit geometric regularization for learning shapes. In: Proceedings of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event. Proceedings of Machine Learning Research, vol. 119, pp. 3789–3799. PMLR (2020)
Hilton, A., Stoddart, A., Illingworth, J., Windeatt, T.: Marching triangles: range image fusion for complex object modelling. In: Proceedings of 3rd IEEE International Conference on Image Processing, vol. 2 (1996)
Ju, T., Losasso, F., Schaefer, S., Warren, J.: Dual contouring of hermite data. ACM TOG 21(3) (2002)
Kazhdan, M., Klein, A., Dalal, K., Hoppe, H.: Unconstrained isosurface extraction on arbitrary octrees (2007)
Liao, Y., Donné, S., Geiger, A.: Deep marching cubes: learning explicit surface representations. In: CVPR, pp. 2916–2925 (2018)
Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.M., Lu, L., Yang, C.: On centroidal Voronoi tessellation-energy smoothness and fast computation. ACM TOG 28(4), 1–17 (2009)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques (1987)
Marschner, Z., Zhang, P., Palmer, D., Solomon, J.: Sum-of-squares geometry processing. ACM TOG 40(6), 1–13 (2021)
Maruani, N., Klokov, R., Ovsjanikov, M., Alliez, P., Desbrun, M.: VoroMesh: learning watertight surface meshes with voronoi diagrams (2023)
Mehta, I., Chandraker, M., Ramamoorthi, R.: A level set theory for neural implicit evolution under explicit flows. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol. 13662, pp. 711–729. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20086-1_41
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Mullen, T.: Mastering Blender. Wiley, Hoboken (2011)
Nabizadeh, M.S., Ramamoorthi, R., Chern, A.: Kelvin transformations for simulations on infinite domains. ACM TOG 40(4), 1–15 (2021)
Nielson, G.: Dual marching cubes. In: IEEE Visualization 2004, pp. 489–496 (2004)
Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF: learning continuous signed distance functions for shape representation. In: CVPR (2019)
Peng, S., Niemeyer, M., Mescheder, L.M., Pollefeys, M., Geiger, A.: Convolutional occupancy networks. ArXiv abs/2003.04618 (2020)
Poole, B., Jain, A., Barron, J.T., Mildenhall, B.: DreamFusion: text-to-3D using 2D diffusion. ArXiv abs/2209.14988 (2022)
Sawhney, R., Crane, K.: Monte Carlo geometry processing: a grid-free approach to PDE-based methods on volumetric domains. ACM TOG 39(4) (2020)
Sawhney, R., Seyb, D., Jarosz, W., Crane, K.: Grid-free Monte Carlo for PDEs with spatially varying coefficients. ACM TOG 41(4) (2022)
Schreiner, J., Scheidegger, C., Silva, C.: High-quality extraction of isosurfaces from regular and irregular grids. IEEE Trans. Vis. Comput. Graph. 12, 1205–1212 (2006)
Shen, T., Gao, J., Yin, K., Liu, M.Y., Fidler, S.: Deep marching tetrahedra: a hybrid representation for high-resolution 3D shape synthesis. In: NeurIPS (2021)
Shen, T., et al.: Flexible isosurface extraction for gradient-based mesh optimization. ACM TOG 42(4) (2023)
Shewchuk, J.: What is a good linear element? - interpolation, conditioning, and quality measures (2002)
Sima, C., et al.: Scene as occupancy. In: ICCV (2023)
Takikawa, T., et al.: Neural geometric level of detail: real-time rendering with implicit 3D shapes (2021)
Thingiverse.com: Digital designs for physical objects
Wang, L., Hétroy-Wheeler, F., Boyer, E.: On volumetric shape reconstruction from implicit forms. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 173–188. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_11
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. In: NeurIPS (2021)
Yariv, L., Gu, J., Kasten, Y., Lipman, Y.: Volume rendering of neural implicit surfaces. In: Thirty-Fifth Conference on Neural Information Processing Systems (2021)
Zhang, K., Riegler, G., Snavely, N., Koltun, V.: NeRF++: analyzing and improving neural radiance fields. arXiv:2010.07492 (2020)
Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv preprint arXiv:1801.09847 (2018)
Acknowledgements
This work is supported by MOE AcRF Tier 1 Grant of Singapore (RG12/22), and also by the RIE2025 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) (Award I2301E0026), administered by A*STAR, as well as supported by Alibaba Group and NTU Singapore. Daxuan Ren was also partially supported by Autodesk Singapore.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ren, D., Shi, H., Zheng, J., Cai, J. (2025). McGrids: Monte Carlo-Driven Adaptive Grids for Iso-Surface Extraction. In: Leonardis, A., Ricci, E., Roth, S., Russakovsky, O., Sattler, T., Varol, G. (eds) Computer Vision – ECCV 2024. ECCV 2024. Lecture Notes in Computer Science, vol 15115. Springer, Cham. https://doi.org/10.1007/978-3-031-72998-0_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-72998-0_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-72997-3
Online ISBN: 978-3-031-72998-0
eBook Packages: Computer ScienceComputer Science (R0)