Skip to main content

Ti3C2Tx MXene Based Nanostructured Materials for Emerging Applications

  • Chapter
  • First Online:
Emerging Applications of Novel Nanoparticles

Abstract

Two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, also referred to as MXenes, have received a lot of attention since the initial discovery of Ti3C2 in 2011. Ti3C2 MXenes have become new candidates with excellent potential for use in optoelectronic devices, such as photovoltaics, photodetectors, and photoelectrochemical devices, due to their exceptional electronic, optical, mechanical, and thermal properties, versatile structures, and surface chemistries. The key to Ti3C2 MXene nanostructures’ success in a variety of electronic and photonic device applications is their excellent metallic conductivity, high anisotropic carrier mobility, good structural and chemical stabilities, high optical transmittance, excellent mechanical strength, tuneable work functions and wide range of optical absorption properties. Here, we provide an overview of the fundamental characteristics, manufacturing process, and optoelectronic applications of functionalized Ti3C2 MXenes, pure Ti3C2 MXenes, and hybrid nanocomposites. Finally, the outlook and existing difficulties of Ti3C2 MXenes towards the creation of sophisticated MXene-based nanostructures for future applications are briefly explored.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anasori, B., Lukatskaya, M. R., Gogotsi, Y., & Barsoum, M. W. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.

    Article  CAS  Google Scholar 

  • Cao, X., Anasori, B., Sarycheva, A., & Gogotsi, Y. (2019). High-performance 2D titanium carbide MXene-based electromagnetic shielding nanocomposites. Advanced Functional Materials, 29(5), 1805297.

    Google Scholar 

  • Chen, Y., Li, S., Liu, H., Wang, J., & Zhang, G. (2021). MXene-based microfluidic devices for on-chip sensing and analysis. Lab on a Chip, 21(22), 4198–4208.

    Google Scholar 

  • Cheng, H., Xu, J., Li, W., Zhang, Y., & Wang, L. (2022). MXene-based composites for efficient photocatalytic hydrogen production. Catalysis Today, 380, 176–184.

    Google Scholar 

  • Ding, L., Chen, M., Shi, Y., & Zhu, C. (2020). MXene-based nanomaterials for electrochemical energy storage. Small Structures, 1(1), 2000008.

    Google Scholar 

  • Ghidiu, M., Lukatskaya, M. R., & Gogotsi, Y. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516(7529), 78–81.

    Article  CAS  PubMed  Google Scholar 

  • Gogotsi, Y. (2018). The wonders of MXene aerogels. ACS Nano, 12(6), 5233–5236.

    Google Scholar 

  • Huang, H., Zhang, X., Liu, Y., Zhang, L., & Chen, Y. (2022). 3D-printed MXene scaffolds for tissue engineering and regenerative medicine. Biomaterials Science, 10(2), 312–324.

    Google Scholar 

  • Khazaei, M., Arai, M., Sasaki, T., & Estili, M. (2013). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23(17), 2185–2192.

    Article  CAS  Google Scholar 

  • Li, X., Ding, Y., Song, Y., & Zhou, Y. (2020). MXene: A promising 2D material for sensing and biosensing. TrAC Trends in Analytical Chemistry, 122, 115696.

    Google Scholar 

  • Li, T., Wang, J., Zhang, Y., Liu, X., & Chen, Z. (2021). MXene-based coatings for corrosion protection of metallic substrates. Surface and Coatings Technology, 414, 126978.

    Google Scholar 

  • Liang, S., Shi, W., Hu, J., Wang, L., & Zhang, H. (2021). MXene-based nanosheets as versatile platforms for biosensing applications. Biosensors and Bioelectronics, 171, 112731.

    Google Scholar 

  • Lin, Z., Barbara, D., Simon, P., & Gogotsi, Y. (2018). 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-ion batteries. Science. Advances, 4(2), eaat3583.

    Google Scholar 

  • Ling, Z., Ren, C., Zhao, M., & Zhang, H. (2019). Recent advances in MXene-based sensors. Advanced Materials, 31(37), 1806733.

    Google Scholar 

  • Lipatov, A., Alhabeb, M., Lukatskaya, M. R., & Gogotsi, Y. (2017). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials, 3(11), 1700055.

    Google Scholar 

  • Liu, Y., Zhan, X., Naguib, M., & Gogotsi, Y. (2019). MXene-based materials as bifunctional electrocatalysts for water splitting and oxygen reduction. Advanced Functional Materials, 29(19), 1808739.

    Google Scholar 

  • Liu, J., Wang, Y., Zhang, H., Liu, X., & Zhang, Y. (2022). MXene-based nanocomposites for efficient electromagnetic wave absorption in the GHz range. Journal of Alloys and Compounds, 891, 161022.

    Google Scholar 

  • Lukatskaya, M. R., Mashtalir, O., & Gogotsi, Y. (2014). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 350(6267), 1508–1513.

    Google Scholar 

  • Lukatskaya, M. R., Kota, S., & Lin, Z. (2016). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 350(6267), 1513–1516.

    Google Scholar 

  • Ma, R., Zhang, T., Xu, Y., Wang, J., & Li, Z. (2022). MXene-based nanocomposites for efficient removal of heavy metals from water. Environmental Science: Nano, 9(1), 12–28.

    CAS  Google Scholar 

  • Naguib, M., Kurtoglu, M., Presser, V., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.

    Article  CAS  PubMed  Google Scholar 

  • Naguib, M., Mashtalir, O., Carle, J., & Presser, V. (2013). MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 29, 47–50.

    Google Scholar 

  • Peng, Q., Guo, J., Zhang, Q., & Yan, J. (2017). Two-dimensional Ti3C2: A prospective candidate for sodium-ion batteries. Nano Energy, 31, 113–118.

    Google Scholar 

  • Pomerantseva, E., Gogotsi, Y., & Simon, P. (2018). Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 21(4), 419–436.

    Article  Google Scholar 

  • Ren, C., Zhang, X., Wang, Y., Liu, Z., & Chen, T. (2022). MXene-based membranes for efficient water desalination and purification. Journal of Membrane Science, 646, 120108.

    Google Scholar 

  • Shahzad, F., Alhabeb, M., Hatter, C., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Pradhan, S. K., Pramanik, M., Limaya, M. V., & Singh, S. V. (2022). MXene based electrospun polymer electrolyte fibers: Fabrication and enhanced ionic conductivity. ChemistrySelect, 7, e202201986.

    Article  CAS  Google Scholar 

  • Sun, X., Chen, Z., Zhang, Y., Liu, G., & Li, J. (2021). MXene-based flexible and stretchable strain sensors for wearable electronics. Nano Energy, 82, 105720.

    Google Scholar 

  • Wang, H., Wu, J., Zhang, K., & Li, J. (2019). MXene-based materials for electrochemical energy storage. Advanced Energy Materials, 9(48), 1901906.

    Google Scholar 

  • Wang, X., Chia, X., Zhao, Y., & Chen, J. (2021). MXenes: A new family of promising hydrogen evolution reaction catalysts. Advanced Energy Materials, 11(8), 2002963.

    Google Scholar 

  • Wang, S., Chen, L., Li, H., Zhang, M., & Liu, X. (2022). MXene-derived hierarchical porous carbon for high-performance lithium-sulfur batteries. Journal of Power Sources, 516, 230–238.

    Google Scholar 

  • Wu, Z., Yang, G., Wang, X., Li, S., & Zhang, L. (2022). MXene-based flexible and transparent electrodes for emerging optoelectronic applications. Advanced Optical Materials, 10(2), 2101354.

    Google Scholar 

  • Xie, Y., Dall’Agnese, Y., Naguib, M., & Gogotsi, Y. (2020). Two-dimensional MXenes for energy storage, conversion, and sensing. Nano Today, 32, 100849.

    Google Scholar 

  • Xu, J., Zhang, H., Wang, L., Zhao, G., & Li, Y. (2021). MXene-based neural interfaces for enhanced biocompatibility and signal recording. ACS Applied Materials & Interfaces, 13(9), 11208–11218.

    Google Scholar 

  • Xuan, J., Wang, Y., Lin, H., & Zhang, H. (2018). MXene-based nanocomposites for electromagnetic interference shielding. Advanced Materials, 30(20), 1705676.

    Google Scholar 

  • Yang, X., Xu, Z., Ge, R., & Cheng, D. (2020). MXene-based materials for catalysis. ACS Nano, 14(8), 9006–9018.

    Google Scholar 

  • Yang, L., Wang, H., Zhang, Y., Li, X., & Liu, J. (2021). MXene-based nanozymes for biomedical applications: Catalytic properties and therapeutic potentials. Nano-Micro Letters, 13(1), 145.

    PubMed  PubMed Central  Google Scholar 

  • Zavabeti, A., Ou, J., Carey, B., & Kaner, R. (2017). A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 358(6361), 332–335.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Anasori, B., Seral-Ascaso, A., Park, S.-H., & Gogotsi, Y. (2017). MXene-based microelectrode arrays for scalable cell interrogation. ACS Nano, 11(5), 4744–4751.

    Google Scholar 

  • Zhang, H., Cao, J., Guan, Z., & Wang, X. (2019). Recent advances in MXene-based electrochemical sensors and biosensors. Trends in Analytical Chemistry, 118, 296–313.

    Google Scholar 

  • Zhang, X., Xie, Y., Liu, Y., & Gogotsi, Y. (2020). MXene-based electrochemical micro supercapacitors: A review. Advanced Energy Materials, 10(21), 1902995.

    Google Scholar 

  • Zhang, Q., Wang, L., Li, Z., Liu, G., & Chen, H. (2022). MXene-based gas sensors for environmental monitoring and health applications. Sensors and Actuators B: Chemical, 350, 130972.

    Google Scholar 

  • Zheng, Y., Wang, J., Zhang, H., Liu, X., & Chen, Z. (2021). MXene-based coatings for flame-retardant applications: Mechanisms and properties. Journal of Hazardous Materials, 412, 125170.

    Google Scholar 

  • Zhou, J., Ren, W., Cheng, H., & Zhang, H. (2020). Recent advances in MXene-based materials for water purification. Advanced Materials, 32(39), 2001419.

    Google Scholar 

  • Zhu, J., Yin, H., Guo, C., & Zhang, Y. (2017). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 5(47), 2445–2453.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar Pradhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sai, L.K., Taneesha, T., Mohapatra, J., Pradhan, S.K. (2024). Ti3C2Tx MXene Based Nanostructured Materials for Emerging Applications. In: Anil Bansal, S., Khanna, V., Balakrishnan, N., Gupta, P. (eds) Emerging Applications of Novel Nanoparticles. Lecture Notes in Nanoscale Science and Technology, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-031-57843-4_5

Download citation

Publish with us

Policies and ethics