Abstract
Two-dimensional (2D) transition-metal carbides, carbonitrides, and nitrides, also referred to as MXenes, have received a lot of attention since the initial discovery of Ti3C2 in 2011. Ti3C2 MXenes have become new candidates with excellent potential for use in optoelectronic devices, such as photovoltaics, photodetectors, and photoelectrochemical devices, due to their exceptional electronic, optical, mechanical, and thermal properties, versatile structures, and surface chemistries. The key to Ti3C2 MXene nanostructures’ success in a variety of electronic and photonic device applications is their excellent metallic conductivity, high anisotropic carrier mobility, good structural and chemical stabilities, high optical transmittance, excellent mechanical strength, tuneable work functions and wide range of optical absorption properties. Here, we provide an overview of the fundamental characteristics, manufacturing process, and optoelectronic applications of functionalized Ti3C2 MXenes, pure Ti3C2 MXenes, and hybrid nanocomposites. Finally, the outlook and existing difficulties of Ti3C2 MXenes towards the creation of sophisticated MXene-based nanostructures for future applications are briefly explored.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anasori, B., Lukatskaya, M. R., Gogotsi, Y., & Barsoum, M. W. (2017). 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2(2), 16098.
Cao, X., Anasori, B., Sarycheva, A., & Gogotsi, Y. (2019). High-performance 2D titanium carbide MXene-based electromagnetic shielding nanocomposites. Advanced Functional Materials, 29(5), 1805297.
Chen, Y., Li, S., Liu, H., Wang, J., & Zhang, G. (2021). MXene-based microfluidic devices for on-chip sensing and analysis. Lab on a Chip, 21(22), 4198–4208.
Cheng, H., Xu, J., Li, W., Zhang, Y., & Wang, L. (2022). MXene-based composites for efficient photocatalytic hydrogen production. Catalysis Today, 380, 176–184.
Ding, L., Chen, M., Shi, Y., & Zhu, C. (2020). MXene-based nanomaterials for electrochemical energy storage. Small Structures, 1(1), 2000008.
Ghidiu, M., Lukatskaya, M. R., & Gogotsi, Y. (2014). Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516(7529), 78–81.
Gogotsi, Y. (2018). The wonders of MXene aerogels. ACS Nano, 12(6), 5233–5236.
Huang, H., Zhang, X., Liu, Y., Zhang, L., & Chen, Y. (2022). 3D-printed MXene scaffolds for tissue engineering and regenerative medicine. Biomaterials Science, 10(2), 312–324.
Khazaei, M., Arai, M., Sasaki, T., & Estili, M. (2013). Novel electronic and magnetic properties of two-dimensional transition metal carbides and nitrides. Advanced Functional Materials, 23(17), 2185–2192.
Li, X., Ding, Y., Song, Y., & Zhou, Y. (2020). MXene: A promising 2D material for sensing and biosensing. TrAC Trends in Analytical Chemistry, 122, 115696.
Li, T., Wang, J., Zhang, Y., Liu, X., & Chen, Z. (2021). MXene-based coatings for corrosion protection of metallic substrates. Surface and Coatings Technology, 414, 126978.
Liang, S., Shi, W., Hu, J., Wang, L., & Zhang, H. (2021). MXene-based nanosheets as versatile platforms for biosensing applications. Biosensors and Bioelectronics, 171, 112731.
Lin, Z., Barbara, D., Simon, P., & Gogotsi, Y. (2018). 2D metal carbides and nitrides (MXenes) as high-performance electrode materials for lithium-ion batteries. Science. Advances, 4(2), eaat3583.
Ling, Z., Ren, C., Zhao, M., & Zhang, H. (2019). Recent advances in MXene-based sensors. Advanced Materials, 31(37), 1806733.
Lipatov, A., Alhabeb, M., Lukatskaya, M. R., & Gogotsi, Y. (2017). Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Advanced Electronic Materials, 3(11), 1700055.
Liu, Y., Zhan, X., Naguib, M., & Gogotsi, Y. (2019). MXene-based materials as bifunctional electrocatalysts for water splitting and oxygen reduction. Advanced Functional Materials, 29(19), 1808739.
Liu, J., Wang, Y., Zhang, H., Liu, X., & Zhang, Y. (2022). MXene-based nanocomposites for efficient electromagnetic wave absorption in the GHz range. Journal of Alloys and Compounds, 891, 161022.
Lukatskaya, M. R., Mashtalir, O., & Gogotsi, Y. (2014). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 350(6267), 1508–1513.
Lukatskaya, M. R., Kota, S., & Lin, Z. (2016). Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science, 350(6267), 1513–1516.
Ma, R., Zhang, T., Xu, Y., Wang, J., & Li, Z. (2022). MXene-based nanocomposites for efficient removal of heavy metals from water. Environmental Science: Nano, 9(1), 12–28.
Naguib, M., Kurtoglu, M., Presser, V., & Barsoum, M. W. (2011). Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23(37), 4248–4253.
Naguib, M., Mashtalir, O., Carle, J., & Presser, V. (2013). MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochemistry Communications, 29, 47–50.
Peng, Q., Guo, J., Zhang, Q., & Yan, J. (2017). Two-dimensional Ti3C2: A prospective candidate for sodium-ion batteries. Nano Energy, 31, 113–118.
Pomerantseva, E., Gogotsi, Y., & Simon, P. (2018). Materials for supercapacitors: When Li-ion battery power is not enough. Materials Today, 21(4), 419–436.
Ren, C., Zhang, X., Wang, Y., Liu, Z., & Chen, T. (2022). MXene-based membranes for efficient water desalination and purification. Journal of Membrane Science, 646, 120108.
Shahzad, F., Alhabeb, M., Hatter, C., & Gogotsi, Y. (2016). Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 353(6304), 1137–1140.
Sharma, P., Pradhan, S. K., Pramanik, M., Limaya, M. V., & Singh, S. V. (2022). MXene based electrospun polymer electrolyte fibers: Fabrication and enhanced ionic conductivity. ChemistrySelect, 7, e202201986.
Sun, X., Chen, Z., Zhang, Y., Liu, G., & Li, J. (2021). MXene-based flexible and stretchable strain sensors for wearable electronics. Nano Energy, 82, 105720.
Wang, H., Wu, J., Zhang, K., & Li, J. (2019). MXene-based materials for electrochemical energy storage. Advanced Energy Materials, 9(48), 1901906.
Wang, X., Chia, X., Zhao, Y., & Chen, J. (2021). MXenes: A new family of promising hydrogen evolution reaction catalysts. Advanced Energy Materials, 11(8), 2002963.
Wang, S., Chen, L., Li, H., Zhang, M., & Liu, X. (2022). MXene-derived hierarchical porous carbon for high-performance lithium-sulfur batteries. Journal of Power Sources, 516, 230–238.
Wu, Z., Yang, G., Wang, X., Li, S., & Zhang, L. (2022). MXene-based flexible and transparent electrodes for emerging optoelectronic applications. Advanced Optical Materials, 10(2), 2101354.
Xie, Y., Dall’Agnese, Y., Naguib, M., & Gogotsi, Y. (2020). Two-dimensional MXenes for energy storage, conversion, and sensing. Nano Today, 32, 100849.
Xu, J., Zhang, H., Wang, L., Zhao, G., & Li, Y. (2021). MXene-based neural interfaces for enhanced biocompatibility and signal recording. ACS Applied Materials & Interfaces, 13(9), 11208–11218.
Xuan, J., Wang, Y., Lin, H., & Zhang, H. (2018). MXene-based nanocomposites for electromagnetic interference shielding. Advanced Materials, 30(20), 1705676.
Yang, X., Xu, Z., Ge, R., & Cheng, D. (2020). MXene-based materials for catalysis. ACS Nano, 14(8), 9006–9018.
Yang, L., Wang, H., Zhang, Y., Li, X., & Liu, J. (2021). MXene-based nanozymes for biomedical applications: Catalytic properties and therapeutic potentials. Nano-Micro Letters, 13(1), 145.
Zavabeti, A., Ou, J., Carey, B., & Kaner, R. (2017). A liquid metal reaction environment for the room-temperature synthesis of atomically thin metal oxides. Science, 358(6361), 332–335.
Zhang, C., Anasori, B., Seral-Ascaso, A., Park, S.-H., & Gogotsi, Y. (2017). MXene-based microelectrode arrays for scalable cell interrogation. ACS Nano, 11(5), 4744–4751.
Zhang, H., Cao, J., Guan, Z., & Wang, X. (2019). Recent advances in MXene-based electrochemical sensors and biosensors. Trends in Analytical Chemistry, 118, 296–313.
Zhang, X., Xie, Y., Liu, Y., & Gogotsi, Y. (2020). MXene-based electrochemical micro supercapacitors: A review. Advanced Energy Materials, 10(21), 1902995.
Zhang, Q., Wang, L., Li, Z., Liu, G., & Chen, H. (2022). MXene-based gas sensors for environmental monitoring and health applications. Sensors and Actuators B: Chemical, 350, 130972.
Zheng, Y., Wang, J., Zhang, H., Liu, X., & Chen, Z. (2021). MXene-based coatings for flame-retardant applications: Mechanisms and properties. Journal of Hazardous Materials, 412, 125170.
Zhou, J., Ren, W., Cheng, H., & Zhang, H. (2020). Recent advances in MXene-based materials for water purification. Advanced Materials, 32(39), 2001419.
Zhu, J., Yin, H., Guo, C., & Zhang, Y. (2017). MXene: A promising photocatalyst for water splitting. Journal of Materials Chemistry A, 5(47), 2445–2453.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Sai, L.K., Taneesha, T., Mohapatra, J., Pradhan, S.K. (2024). Ti3C2Tx MXene Based Nanostructured Materials for Emerging Applications. In: Anil Bansal, S., Khanna, V., Balakrishnan, N., Gupta, P. (eds) Emerging Applications of Novel Nanoparticles. Lecture Notes in Nanoscale Science and Technology, vol 37. Springer, Cham. https://doi.org/10.1007/978-3-031-57843-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-57843-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-57842-7
Online ISBN: 978-3-031-57843-4
eBook Packages: Chemistry and Materials ScienceChemistry and Material Science (R0)