Skip to main content

Ontology-Based Metamodelling, Modelling and Application Development

  • Chapter
  • First Online:
Metamodeling: Applications and Trajectories to the Future
  • 184 Accesses

Abstract

Using three dimensions of the knowledge space for conceptual modeling, graphical models and logic-based ontologies are compared. Their integration results in ontology-based modelling and metamodeling. Models can be easily created and understood by humans. At the same time, the representation as an ontology allows for machine interpretation. It is shown how ontology-based metamodelling can overcome disadvantages of the Meta Object Facility and the Model-driven Architecture for application development, knowledge-based systems, model validation and knowledge management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.omilab.org/

  2. 2.

    https://adoxx.org/

  3. 3.

    https://www.omg.org/mda/

References

  1. Mylopoulos, J.: Conceptual modelling and Telos. In: Conceptual Modelling, Databases, and CASE: An Integrated View of Information System Development, pp. 49–68. Wiley (1992)

    Google Scholar 

  2. Weber, R.: Conceptual modelling and ontology: possibilities and pitfalls. J. Database Manag. 14(3), 1–20 (2003)

    Article  Google Scholar 

  3. Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta) models. In: Vasilecas, O., et al. (eds.) Databases and Information Systems IV, Papers of the Sevenths International Baltic Conference DB&IS’2006. IOS Press (2007)

    Google Scholar 

  4. Karagiannis, D., Woitsch, R.: Knowledge engineering in business process management. In: Michael, V.B.J.A. (ed.) Handbook on Business Process Management 2, pp. 463–485. Springer, Berlin (2010)

    Chapter  Google Scholar 

  5. Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., et al. (eds.) Proceedings of the Third International Conference EC-Web at DEXA 2002. Springer, Berlin (2002)

    Google Scholar 

  6. W3C: RDF Schema 1.1. World-Wide Web Consortium (2014)

    Google Scholar 

  7. OMG: OMG Meta Object Facility (MOF) Core Specification, Version 2.5.1. Object Management Group (2019)

    Google Scholar 

  8. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation. IEEE Softw. 20(5), 36–41 (Sep–Oct 2003)

    Article  Google Scholar 

  9. Den Haan, J.: 8 reasons why model-driven approaches (will) fail. https://www.infoq.com/articles/8-reasons-why-MDE-fails/ Accessed 01 Jan 2024

  10. Strahringer, S.: Ein sprachbasierter Metamodellbegriff und seine Verallgemeinerung durch das Konzept des Metaisierungsprinzips. In: Pohl, K. et al. (eds.) Modellierung ’98, Proceedings des GI-Workshops in Münster, 11.-13. März 1998. CEUR Workshop Proceeding, vol. 9. https://ceur-ws.org/Vol-9/ (1998)

  11. Karagiannis, D.: Agile modeling method engineering. In: Proceedings of the 19th Panhellenic Conference on Informatics, pp. 5–10. Springer (2015)

    Chapter  Google Scholar 

  12. Karagiannis, D., et al.: Domain-Specific Conceptual Modeling. Springer (2016)

    Book  Google Scholar 

  13. Karagiannis, D., et al. (eds.): Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools. Springer, Cham (2022)

    Google Scholar 

  14. Guarino, N., et al.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn, pp. 1–17. Springer, Berlin (2009)

    Google Scholar 

  15. Brachman, R.J.: On the epistemological status of semantic networks. In: Findler, N.V. (ed.) Associative Networks: Representation and Use of Knowledge by Computers, pp. 3–50. Academic, New York (1979)

    Chapter  Google Scholar 

  16. Baader, F., et al.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)

    Google Scholar 

  17. Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation system. Cogn. Sci. 9, 171–216 (1985)

    Google Scholar 

  18. W3C: OWL 2 Web Ontology Language Primer, 2nd edn. World Wide Web Consortium (2012)

    Google Scholar 

  19. Karagiannis, D., Höfferer, P.: Metamodels in action: an overview. In: Filipe, J., et al. (eds.) ICSOFT 2006—First International Conference on Software and Data Technologies. Springer, Setubal (2006)

    Google Scholar 

  20. Laurenzi, E., et al.: An agile and ontology-aided modeling environment. In: 11th IFIP WG 8.1 Conference on the Practice of Enterprise Modelling, pp. 221–237. Springer (2018)

    Chapter  Google Scholar 

  21. OMG: Semantics of a Foundational Subset for Executable UML Models (fUML) Version 1.5. Object Management Group (2021)

    Google Scholar 

  22. Montecchiari, D., Hinkelmann, K.: Towards ontology-based validation of EA principles. In: The Practice of Enterprise Modeling, pp. 66–81. Springer (2022)

    Chapter  Google Scholar 

  23. Montecchiari, D., Hinkelmann, K.: Validating enterprise architecture principles using derivation rules and domain knowledge. In: Perspectives in Business Informatics Research, pp. 244–259. Springer Nature Switzerland (2023)

    Chapter  Google Scholar 

  24. OMG: Semantics of Business Vocabulary and Business Rules (SBVR) Version 1.5. Objekt Management Group (2019)

    Google Scholar 

  25. Hinkelmann, K., et al.: ArchiMEO: a standardized enterprise ontology based on the ArchiMate conceptual model. In: Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development. SCITEPRESS - Science and Technology Publications (2020). https://doi.org/10.5220/0009000204170424

  26. Abecker, A., et al.: Toward a technology tor organizational memories. IEEE Intell. Syst. Appl. 13, 3 (1998). https://doi.org/10.1109/5254.683209

    Article  Google Scholar 

  27. Hinkelmann, K., et al.: PROMOTE—Methodologie und Werkzeug für geschäftsprozessorientiertes Wissensmanagement. In: Abecker, A., et al. (eds.) Geschäftsprozessorientiertes Wissensmanagement, pp. 65–90. Springer, Berlin (2002)

    Chapter  Google Scholar 

  28. Woitsch, R., Karagiannis, D.: Process-oriented knowledge management systems based on KM-services: the PROMOTE approach. Int. J. Intell. Syst. Account. Finance Manag. 11(4), 253–267 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Hinkelmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hinkelmann, K. (2024). Ontology-Based Metamodelling, Modelling and Application Development. In: Fill, HG., Kühn, H. (eds) Metamodeling: Applications and Trajectories to the Future. Springer, Cham. https://doi.org/10.1007/978-3-031-56862-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56862-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56861-9

  • Online ISBN: 978-3-031-56862-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics