Abstract
Using three dimensions of the knowledge space for conceptual modeling, graphical models and logic-based ontologies are compared. Their integration results in ontology-based modelling and metamodeling. Models can be easily created and understood by humans. At the same time, the representation as an ontology allows for machine interpretation. It is shown how ontology-based metamodelling can overcome disadvantages of the Meta Object Facility and the Model-driven Architecture for application development, knowledge-based systems, model validation and knowledge management.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Mylopoulos, J.: Conceptual modelling and Telos. In: Conceptual Modelling, Databases, and CASE: An Integrated View of Information System Development, pp. 49–68. Wiley (1992)
Weber, R.: Conceptual modelling and ontology: possibilities and pitfalls. J. Database Manag. 14(3), 1–20 (2003)
Guizzardi, G.: On ontology, ontologies, conceptualizations, modeling languages, and (meta) models. In: Vasilecas, O., et al. (eds.) Databases and Information Systems IV, Papers of the Sevenths International Baltic Conference DB&IS’2006. IOS Press (2007)
Karagiannis, D., Woitsch, R.: Knowledge engineering in business process management. In: Michael, V.B.J.A. (ed.) Handbook on Business Process Management 2, pp. 463–485. Springer, Berlin (2010)
Karagiannis, D., Kühn, H.: Metamodelling platforms. In: Bauknecht, K., et al. (eds.) Proceedings of the Third International Conference EC-Web at DEXA 2002. Springer, Berlin (2002)
W3C: RDF Schema 1.1. World-Wide Web Consortium (2014)
OMG: OMG Meta Object Facility (MOF) Core Specification, Version 2.5.1. Object Management Group (2019)
Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation. IEEE Softw. 20(5), 36–41 (Sep–Oct 2003)
Den Haan, J.: 8 reasons why model-driven approaches (will) fail. https://www.infoq.com/articles/8-reasons-why-MDE-fails/ Accessed 01 Jan 2024
Strahringer, S.: Ein sprachbasierter Metamodellbegriff und seine Verallgemeinerung durch das Konzept des Metaisierungsprinzips. In: Pohl, K. et al. (eds.) Modellierung ’98, Proceedings des GI-Workshops in Münster, 11.-13. März 1998. CEUR Workshop Proceeding, vol. 9. https://ceur-ws.org/Vol-9/ (1998)
Karagiannis, D.: Agile modeling method engineering. In: Proceedings of the 19th Panhellenic Conference on Informatics, pp. 5–10. Springer (2015)
Karagiannis, D., et al.: Domain-Specific Conceptual Modeling. Springer (2016)
Karagiannis, D., et al. (eds.): Domain-Specific Conceptual Modeling: Concepts, Methods and ADOxx Tools. Springer, Cham (2022)
Guarino, N., et al.: What is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies, 2nd edn, pp. 1–17. Springer, Berlin (2009)
Brachman, R.J.: On the epistemological status of semantic networks. In: Findler, N.V. (ed.) Associative Networks: Representation and Use of Knowledge by Computers, pp. 3–50. Academic, New York (1979)
Baader, F., et al.: The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press (2003)
Brachman, R.J., Schmolze, J.G.: An overview of the KL-ONE knowledge representation system. Cogn. Sci. 9, 171–216 (1985)
W3C: OWL 2 Web Ontology Language Primer, 2nd edn. World Wide Web Consortium (2012)
Karagiannis, D., Höfferer, P.: Metamodels in action: an overview. In: Filipe, J., et al. (eds.) ICSOFT 2006—First International Conference on Software and Data Technologies. Springer, Setubal (2006)
Laurenzi, E., et al.: An agile and ontology-aided modeling environment. In: 11th IFIP WG 8.1 Conference on the Practice of Enterprise Modelling, pp. 221–237. Springer (2018)
OMG: Semantics of a Foundational Subset for Executable UML Models (fUML) Version 1.5. Object Management Group (2021)
Montecchiari, D., Hinkelmann, K.: Towards ontology-based validation of EA principles. In: The Practice of Enterprise Modeling, pp. 66–81. Springer (2022)
Montecchiari, D., Hinkelmann, K.: Validating enterprise architecture principles using derivation rules and domain knowledge. In: Perspectives in Business Informatics Research, pp. 244–259. Springer Nature Switzerland (2023)
OMG: Semantics of Business Vocabulary and Business Rules (SBVR) Version 1.5. Objekt Management Group (2019)
Hinkelmann, K., et al.: ArchiMEO: a standardized enterprise ontology based on the ArchiMate conceptual model. In: Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development. SCITEPRESS - Science and Technology Publications (2020). https://doi.org/10.5220/0009000204170424
Abecker, A., et al.: Toward a technology tor organizational memories. IEEE Intell. Syst. Appl. 13, 3 (1998). https://doi.org/10.1109/5254.683209
Hinkelmann, K., et al.: PROMOTE—Methodologie und Werkzeug für geschäftsprozessorientiertes Wissensmanagement. In: Abecker, A., et al. (eds.) Geschäftsprozessorientiertes Wissensmanagement, pp. 65–90. Springer, Berlin (2002)
Woitsch, R., Karagiannis, D.: Process-oriented knowledge management systems based on KM-services: the PROMOTE approach. Int. J. Intell. Syst. Account. Finance Manag. 11(4), 253–267 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Hinkelmann, K. (2024). Ontology-Based Metamodelling, Modelling and Application Development. In: Fill, HG., Kühn, H. (eds) Metamodeling: Applications and Trajectories to the Future. Springer, Cham. https://doi.org/10.1007/978-3-031-56862-6_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-56862-6_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-56861-9
Online ISBN: 978-3-031-56862-6
eBook Packages: Computer ScienceComputer Science (R0)