Skip to main content

Taming Non-autonomous Chaos in Duffing System Using Small Harmonic Perturbation

  • Conference paper
  • First Online:
Advances in Mathematical Modelling, Applied Analysis and Computation (ICMMAAC 2023)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 953))

  • 27 Accesses

Abstract

In this work, three different classes of the excited models of Duffing system have been considered. In the considered Duffing models, for mathematical simplicity, only linear damping term is included. The various parameters values controlling the complex dynamics are so chosen that each of the models exhibit chaotic strange behavior in their corresponding phase-portraits, Poincare surface of sections and bifurcation diagram when excited sinusoidally with an amplitude, F and frequency \(\omega \). Unlike the usual method of feedback control, we explore the application of non-feedback control by directly adding a weak additional external periodic perturbation of frequency, \(\varOmega \), to control the chaos in these models. Incorporating such a perturbation term, bifurcation diagram have been reconstructed to ascertain critical values of the perturbation parameters transforming the chaotic response in the foregoing models to regular behavior. The non-feedback control, in the form of additional small harmonic perturbation term involving such critical parameters, has been shown to result in phase portraits showing the effectiveness of controlling the observed complex chaotic dynamics to regular dynamical response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kovacic, I., Brennan, M.J.: Forced harmonic vibration of an asymmetric duffing oscillator. In: The Duffing Equation Nonlinear Oscillators and their behavior. Kovacic, I., Brennan, M.J. (eds.) Wiley, pp. 277–320 (2011)

    Google Scholar 

  2. Ott, E., Grebogi, C., Yorke, J.A.: Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199 (1990). https://doi.org/10.1103/PhysRevLett.64.1196

    Article  MathSciNet  Google Scholar 

  3. Shinbrot, T., Ott, E., Grebogi, C., Yorke, J.A.: Using small perturbation to control chaos. Nature 363, 411–417 (1993). https://doi.org/10.1038/363411a0

    Article  Google Scholar 

  4. Braiman, Y., Goldhrisch, I.: Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 66, 2545–2548 (1991). https://doi.org/10.1103/PhysRevLett.66.2545

    Article  MathSciNet  Google Scholar 

  5. Qu, Z., Hu, G., Ma, B.: Controlling chaos via continuous feedback. Phys. Lett. A 178, 265–270 (1993). https://doi.org/10.1016/0375-9601(93)91100-J

    Article  MathSciNet  Google Scholar 

  6. Kapitanik, T., Kocarev, L.J., Chua, L.O.: Controlling chaos without a feedback and control signals. Int. J. Bifurcation Chaos 3, 459–468 (1993). https://doi.org/10.1142/S0218127493000362

    Article  Google Scholar 

  7. Hu, G., Qu, Z.: Controlling spatiotemporal chaos in coupled map lattice systems. Phys. Rev. Lett. 72, 68–73 (1994). https://doi.org/10.1103/PhysRevLett.72.68

    Article  Google Scholar 

  8. Qu, Z., Hu, G., Yang, G., Qin, G.: Phase effect in taming non-autonomous chaos by weak harmonic perturbations. Phys. Rev. Lett. 74, 1736–1739 (1995). https://doi.org/10.1103/PhysRevLett.74.1736-1739

    Article  Google Scholar 

  9. Litak, G., Borowiec, M., Ali, M., Saha, L.M., Friswell, M.I.: Pulsive feedback control of a quarter car model forced by a road profile. J. Chaos Solitons and Fractals 33, 1672–1676 (2007). https://doi.org/10.1016/j.chaos.2006.03.008

    Article  Google Scholar 

  10. Akhmet, M.U., Fen, M.O.: Chaotic period-doubling and OGY control for the forced Duffing equation. Commun. Nonlinear Sci. Numer. Simulat. 17, 1929–1946 (2012). https://doi.org/10.1016/j.cnsns.2011.09.016

    Article  MathSciNet  Google Scholar 

  11. Pedro, J., Martínez, P.J., Euzzor, S., Gallas, J.A.C., Meucci, R., Chacon, R.: Identification of minimal parameters for optimal suppression of chaos in dissipative driven systems. Sci. Rep. 7, 1–7 (2017). https://doi.org/10.1038/s41598-017-17969-9

    Article  Google Scholar 

  12. Wawrzynski, W.: Duffing-type oscillator under harmonic excitation with a variable value of excitation amplitude and time-dependent external disturbances. Sci. Rep. 11, 1–15 (2021). https://doi.org/10.1038/s41598-021-82652-z

    Article  Google Scholar 

  13. Sun, Z., Xu, W., Yang, X., Fang, T.: Inducing or suppressing chaos in a double-well Duffing oscillator by time delay feedback. J. Chaos Solitons Fractals 27, 705–714 (2006). https://doi.org/10.1016/j.chaos.2005.04.041

    Article  Google Scholar 

  14. Jakšic, N.: Phase portraits of the autonomous duffing single-degree-of-freedom oscillator with coulomb dry friction. In: Advances in Acoustics and Vibration, vol. 2014, Article ID 465489, pp. 1–10 (2014). https://doi.org/10.1155/2014/465489

  15. Syta, A., Litak, G., Lenci, S., Scheffler, M.: Chaotic vibrations of the duffing system with fractional damping. Chaos 24, 1–6 (2014). https://doi.org/10.1063/1.4861942

    Article  MathSciNet  Google Scholar 

  16. Abbadi, Z., Simiu, E.: Taming chaotic dynamics with weak periodic perturbations: an elucidation and critique. Nanotechnology 13, 153–156 (2002). https://doi.org/10.1088/0957-4484/13/2/305

    Article  Google Scholar 

  17. Palmero, F., Chacón, R.: Suppressing chaos in damped driven systems by non-harmonic excitations: experimental robustness against potential’s mismatches. J. Nonlinear Dynamics 108, 2643–2654 (2022). https://doi.org/10.1007/s11071-022-07329-2

    Article  Google Scholar 

  18. Ainamon, C., Hinvi, L.A., Paiinvoh, F.C., Miwadinou, C.H., Monwanou, A.V., Orou, J.B.C.: Influence of amplitude-modulated excitation on the dynamic behaviour of polarisation of a material. Pramana- J. Phys. 95, 1–19 (2021). https://doi.org/10.1007/s12043-021-02168-z

    Article  Google Scholar 

  19. Ueda, Y.: Survey of regular and chaotic phenomena in the forced duffing oscillator. J. Chaos Soliton Fractals 1, 199–231 (1991). https://doi.org/10.1016/0960-0779(91)90032-5

    Article  MathSciNet  Google Scholar 

  20. Litak, G., Syta, A., Borowiec, M.: Suppression of chaos by weak resonant excitations in a non-linear oscillator with a non-symmetric potential. 2007. J. Chaos Solitons Fractals 32, 694–701 (2007). https://doi.org/10.1016/j.chaos.2005.11.026

  21. Litak, G., Ali, M., Saha, L.M.: Pulsating feedback control for stabilizing unstable periodic orbits in a nonlinear oscillator with a non-symmetric potential. Int. J. Bif. Chaos. 17, 1797–2803 (2007). https://doi.org/10.1142/S0218127407018774

    Article  Google Scholar 

  22. Kadji, H.G.E., Orou, J.B.C., Woafo, P.: Regular and chaotic behaviors of plasma oscillations modeled by a modified duffing equation. Phys. Scr. 77, 1–7 (2008). https://doi.org/10.1088/0031-8949/77/02/025503

    Article  Google Scholar 

  23. Brennana, M.J., Kovacicb, I., Carrellaa, A., Watersa, T.P.: On the jump-up and jump-down frequencies of the duffing oscillator. J. Sound Vib. 318, 1250–1261 (2008). https://doi.org/10.1016/j.jsv.2008.04.032

    Article  Google Scholar 

  24. Das, S., Bhardwaj, R.: Recurrence analysis and synchronization of two resistively coupled duffing-type oscillators. J. Nonlinear Dyn. 104, 2127–2144 (2021). https://doi.org/10.1016/j.jsv.2008.04.032

    Article  Google Scholar 

  25. Yabuno, H.: Free Vibration of a Duffing Oscillator with viscous damping. In: The Duffing Equation Nonlinear Oscillators and their behavior. Kovacic, I., Brennan, M.J. (eds.) Wiley, pp. 55–80 (2011)

    Google Scholar 

  26. Yang, J., Qu, Z., Hu, G.: Duffing equation with two periodic forcings: the phase effect. Phys. Rev. E 53, 4402–4413 (1996). https://doi.org/10.1103/PhysRevE.53.4402

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

Authors thank the referees, editors for their encouragement and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chaudhary, A.K., Das, S., Narang, P., Bhattacharjee, A., Das, M.K. (2024). Taming Non-autonomous Chaos in Duffing System Using Small Harmonic Perturbation. In: Singh, J., Anastassiou, G.A., Baleanu, D., Kumar, D. (eds) Advances in Mathematical Modelling, Applied Analysis and Computation . ICMMAAC 2023. Lecture Notes in Networks and Systems, vol 953. Springer, Cham. https://doi.org/10.1007/978-3-031-56304-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-56304-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-56303-4

  • Online ISBN: 978-3-031-56304-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics