Skip to main content

Relaxometry Guided Quantitative Cardiac Magnetic Resonance Image Reconstruction

  • Conference paper
  • First Online:
Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers (STACOM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14507))

Abstract

Deep learning-based methods have achieved prestigious performance for magnetic resonance imaging (MRI) reconstruction, enabling fast imaging for many clinical applications. Previous methods employ convolutional networks to learn the image prior as the regularization term. In quantitative MRI, the physical model of nuclear magnetic resonance relaxometry is known, providing additional prior knowledge for image reconstruction. However, traditional reconstruction networks are limited to learning the spatial domain prior knowledge, ignoring the relaxometry prior. Therefore, we propose a relaxometry-guided quantitative MRI reconstruction framework to learn the spatial prior from data and the relaxometry prior from MRI physics. Additionally, we also evaluated the performance of two popular reconstruction backbones, namely, recurrent variational networks (RVN) and variational networks (VN) with U-Net. Experiments demonstrate that the proposed method achieves highly promising results in quantitative MRI reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use \(\boldsymbol{x}\) for both complex and magnitude image for simplicity.

  2. 2.

    https://cmrxrecon.github.io/.

References

  1. Barbieri, M., et al.: A deep learning approach for magnetic resonance fingerprinting: scaling capabilities and good training practices investigated by simulations. Phys. Med. 89, 80–92 (2021)

    Article  Google Scholar 

  2. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  3. Eliasi, P.A., Feng, L., Otazo, R., Rangan, S.: Fast magnetic resonance parametric imaging via structured low-rank matrix reconstruction. In: 2014 48th Asilomar Conference on Signals, Systems and Computers, pp. 423–428. IEEE (2014)

    Google Scholar 

  4. Fabian, Z., Heckel, R., Soltanolkotabi, M.: Data augmentation for deep learning based accelerated MRI reconstruction with limited data. In: International Conference on Machine Learning, pp. 3057–3067. PMLR (2021)

    Google Scholar 

  5. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  6. Haacke, E.M.: Magnetic resonance imaging: physical principles and sequence design (1999)

    Google Scholar 

  7. Haaf, P., Garg, P., Messroghli, D.R., Broadbent, D.A., Greenwood, J.P., Plein, S.: Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J. Cardiovasc. Magn. Reson. 18(1), 1–12 (2017)

    Article  Google Scholar 

  8. Hammernik, K., et al.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  9. Heidemann, R.M., et al.: A brief review of parallel magnetic resonance imaging. Eur. Radiol. 13, 2323–2337 (2003)

    Article  Google Scholar 

  10. Huizinga, W., et al.: PCA-based groupwise image registration for quantitative MRI. Med. Image Anal. 29, 65–78 (2016)

    Article  Google Scholar 

  11. Hyun, C.M., Kim, H.P., Lee, S.M., Lee, S., Seo, J.K.: Deep learning for undersampled mri reconstruction. Phys. Med. Biol. 63(13), 135007 (2018)

    Article  Google Scholar 

  12. Larkman, D.J., Nunes, R.G.: Parallel magnetic resonance imaging. Phys. Med. Biol. 52(7), R15 (2007)

    Article  Google Scholar 

  13. Larsson, E.G., Erdogmus, D., Yan, R., Principe, J.C., Fitzsimmons, J.R.: Snr-optimality of sum-of-squares reconstruction for phased-array magnetic resonance imaging. J. Magn. Reson. 163(1), 121–123 (2003)

    Article  Google Scholar 

  14. Liu, F., Feng, L., Kijowski, R.: MANTIS: model-augmented neural network with incoherent k-space sampling for efficient MR parameter mapping. Magn. Reson. Med. 82(1), 174–188 (2019)

    Article  Google Scholar 

  15. Liu, F., Kijowski, R., El Fakhri, G., Feng, L.: Magnetic resonance parameter mapping using model-guided self-supervised deep learning. Magn. Reson. Med. 85(6), 3211–3226 (2021)

    Article  Google Scholar 

  16. Lønning, K., Putzky, P., Sonke, J.J., Reneman, L., Caan, M.W., Welling, M.: Recurrent inference machines for reconstructing heterogeneous MRI data. Med. Image Anal. 53, 64–78 (2019)

    Article  Google Scholar 

  17. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  18. Messroghli, D.R., Radjenovic, A., Kozerke, S., Higgins, D.M., Sivananthan, M.U., Ridgway, J.P.: Modified look-locker inversion recovery (MOLLI) for high-resolution t1 mapping of the heart. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 52(1), 141–146 (2004)

    Article  Google Scholar 

  19. O’Brien, A.T., Gil, K.E., Varghese, J., Simonetti, O.P., Zareba, K.M.: T2 mapping in myocardial disease: a comprehensive review. J. Cardiovasc. Magn. Reson. 24(1), 1–25 (2022)

    Article  Google Scholar 

  20. Pruessmann, K.P., Weiger, M., Börnert, P., Boesiger, P.: Advances in sensitivity encoding with arbitrary k-space trajectories. Magn. Reson. Med.: Off. J. Int. Soc. Magn. Reson. Med. 46(4), 638–651 (2001)

    Article  Google Scholar 

  21. Putzky, P., Welling, M.: Recurrent inference machines for solving inverse problems. arXiv preprint arXiv:1706.04008 (2017)

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  23. Seraphim, A., Knott, K.D., Augusto, J., Bhuva, A.N., Manisty, C., Moon, J.C.: Quantitative cardiac MRI. J. Magn. Reson. Imaging 51(3), 693–711 (2020)

    Article  Google Scholar 

  24. Shafieizargar, B., Byanju, R., Sijbers, J., Klein, S., den Dekker, A.J., Poot, D.H.: Systematic review of reconstruction techniques for accelerated quantitative MRI. Magn. Reson. Med. (2023)

    Google Scholar 

  25. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020, Part II. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7

    Chapter  Google Scholar 

  26. Wang, C., et al.: Recommendation for cardiac magnetic resonance imaging-based phenotypic study: imaging part. Phenomics 1, 151–170 (2021)

    Article  Google Scholar 

  27. Wang, C., et al.: CMRxRecon: an open cardiac MRI dataset for the competition of accelerated image reconstruction. arXiv preprint arXiv:2309.10836 (2023)

  28. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  29. Yang, Y., Sun, J., Li, H., Xu, Z.: ADMM-CSNet: a deep learning approach for image compressive sensing. IEEE Trans. Pattern Anal. Mach. Intell. 42(3), 521–538 (2018)

    Article  Google Scholar 

  30. Yiasemis, G., Sonke, J.J., Sánchez, C., Teuwen, J.: Recurrent variational network: a deep learning inverse problem solver applied to the task of accelerated MRI reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 732–741 (2022)

    Google Scholar 

  31. Zhu, B., Liu, J.Z., Cauley, S.F., Rosen, B.R., Rosen, M.S.: Image reconstruction by domain-transform manifold learning. Nature 555(7697), 487–492 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yidong Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Zhang, Y., Tao, Q. (2024). Relaxometry Guided Quantitative Cardiac Magnetic Resonance Image Reconstruction. In: Camara, O., et al. Statistical Atlases and Computational Models of the Heart. Regular and CMRxRecon Challenge Papers. STACOM 2023. Lecture Notes in Computer Science, vol 14507. Springer, Cham. https://doi.org/10.1007/978-3-031-52448-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-52448-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-52447-9

  • Online ISBN: 978-3-031-52448-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics