Skip to main content

Purification of In Vivo or In Vitro-Assembled RNA-Protein Complexes by RNA Centric Methods

  • Chapter
  • First Online:
Advanced Technologies for Protein Complex Production and Characterization

Abstract

Throughout their entire life cycle, RNAs are associated with RNA-binding proteins (RBPs), forming ribonucleoprotein (RNP) complexes with highly dynamic compositions and very diverse functions in RNA metabolism, including splicing, translational regulation, ribosome assembly. Many RNPs remain poorly characterized due to the challenges inherent in their purification and subsequent biochemical characterization. Therefore, developing methods to isolate specific RNA-protein complexes is an important initial step toward understanding their function. Many elegant methodologies have been developed to isolate RNPs. This chapter describes different approaches and methods devised for RNA-specific purification of a target RNP. We focused on general methods for selecting RNPs that target a given RNA under conditions favourable for the copurification of associated factors including RNAs and protein components of the RNP.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 189.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rouault TA, Hentze MW, Haile DJ, Harford JB, Klausner RD (1989) The iron-responsive element binding protein: a method for the affinity purification of a regulatory RNA-binding protein. Proc Natl Acad Sci U S A 86:5768–5772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Neupert B, Thompson NA, Meyer C, Kuhn LC (1990) A high yield affinity purification method for specific RNA-binding proteins: isolation of the iron regulatory factor from human placenta. Nucleic Acids Res 18:51–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bardwell VJ, Wickens M (1990) Purification of RNA and RNA-protein complexes by an R17 coat protein affinity method. Nucleic Acids Res 18:6587–6594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lowary PT, Uhlenbeck OC (1987) An RNA mutation that increases the affinity of an RNA–protein interaction. Nucleic Acids Res 15:10483–10493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bachler M, Schroeder R, von Ahsen U (1999) StreptoTag: a novel method for the isolation of RNA-binding proteins. RNA 5:1509–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Srisawat C, Engelke DR (2001) Streptavidin aptamers: affinity tags for the study of RNAs and ribonucleoproteins. RNA 7:632–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Srisawat C, Goldstein IJ, Engelke DR (2001) Sephadex-binding RNA ligands: rapid affinity purification of RNA from complex RNA mixtures. Nucleic Acids Res 29:E4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hartmuth K et al (2002) Protein composition of human prespliceosomes isolated by a tobramycin affinity-selection method. Proc Natl Acad Sci U S A 99:16719–16724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Panchapakesan SSS et al (2017) Ribonucleoprotein purification and characterization using RNA mango. RNA 23:1592–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Das R, Zhou Z, Reed R (2000) Functional association of U2 snRNP with the ATP-independent spliceosomal complex E. Mol Cell 5:779–787

    Article  CAS  PubMed  Google Scholar 

  11. Jurica MS, Licklider LJ, Gygi SR, Grigorieff N, Moore MJ (2002) Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. RNA 8:426–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ji H, Fraser CS, Yu Y, Leary J, Doudna JA (2004) Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc Natl Acad Sci U S A 101:16990–16995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhou Z, Sim J, Griffith J, Reed R (2002) Purification and electron microscopic visualization of functional human spliceosomes. Proc Natl Acad Sci U S A 99:12203–12207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Locker N, Easton LE, Lukavsky PJ (2006) Affinity purification of eukaryotic 48S initiation complexes. RNA 12:683–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang Y, Rando RR (1995) Specific binding of aminoglycoside antibiotics to RNA. Chem Biol 2:281–290

    Article  CAS  PubMed  Google Scholar 

  16. Hartmuth K, Vornlocher H-P, Lührmann R (2004) Tobramycin affinity tag purification of spliceosomes. Methods Mol Biol 257:47–64

    CAS  PubMed  Google Scholar 

  17. Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128:1105–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Iioka H, Loiselle D, Haystead TA, Macara IG (2011) Efficient detection of RNA-protein interactions using tethered RNAs. Nucleic Acids Res 39:e53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dix CI et al (2013) Lissencephaly-1 promotes the recruitment of dynein and dynactin to transported mRNAs. J Cell Biol 202:479–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leppek K, Stoecklin G (2014) An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res 42:e13

    Article  CAS  PubMed  Google Scholar 

  21. Srisawat C, Engelke DR (2002) RNA affinity tags for purification of RNAs and ribonucleoprotein complexes. Methods 26:156–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deckert J et al (2006) Protein composition and electron microscopy structure of affinity-purified human Spliceosomal B complexes isolated under physiological conditions. Mol Cell Biol 26(14):5528–5543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kastner B et al (2008) GraFix: sample preparation for single-particle electron cryomicroscopy. Nat Methods 5:53–55

    Article  CAS  PubMed  Google Scholar 

  24. Lim F, Downey TP, Peabody DS (2001) Translational repression and specific RNA binding by the coat protein of the pseudomonas phage PP7. J Biol Chem 276:22507–22513

    Article  CAS  PubMed  Google Scholar 

  25. Lim F, Peabody DS (2002) RNA recognition site of PP7 coat protein. Nucleic Acids Res 30:4138–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hogg JR, Collins K (2007) RNA-based affinity purification reveals 7SK RNPs with distinct composition and regulation. RNA 13:868–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hogg JR, Goff SP (2010) Upf1 senses 3′UTR length to potentiate mRNA decay. Cell 143:379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fritz SE, Haque N, Hogg JR (2018) Highly efficient in vitro translation of authentic affinity-purified messenger ribonucleoprotein complexes. RNA 24:982–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Baron-Benhamou J, Gehring NH, Kulozik AE, Hentze MW (2004) Using the λN peptide to tether proteins to RNAs. In: MRNA Processing and Metabolism. Humana Press, Totowa, pp 135–154

    Chapter  Google Scholar 

  30. Gehring NH, Hentze MW, Kulozik AE (2008) Chapter 23 tethering assays to investigate nonsense-mediated mRNA decay activating proteins. In: Methods in enzymology. Elsevire, London, pp 467–482

    Google Scholar 

  31. Ramanathan M et al (2018) RNA–protein interaction detection in living cells. Nat Methods 15:207–212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Piekna-Przybylska D, Liu B, Fournier MJ (2007) The U1 snRNA hairpin II as a RNA affinity tag for selecting snoRNP complexes. Methods Enzymol 425:317–353

    Article  CAS  PubMed  Google Scholar 

  33. LeCuyer KA, Behlen LS, Uhlenbeck OC (1995) Mutants of the bacteriophage MS2 coat protein that alter its cooperative binding to RNA. Biochemistry 34:10600–10606

    Article  CAS  PubMed  Google Scholar 

  34. Bertram K et al (2017) Cryo-EM structure of a pre-catalytic human spliceosome primed for activation. Cell 170:701–713.e11

    Article  CAS  PubMed  Google Scholar 

  35. Yoon J-H, Srikantan S, Gorospe M (2012) MS2-TRAP (MS2-tagged RNA affinity purification): tagging RNA to identify associated miRNAs. Methods 58:81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Beach DL, Keene JD (2008) Ribotrap: targeted purification of RNA-specific RNPs from cell lysates through immunoaffinity precipitation to identify regulatory proteins and RNAs. Methods Mol Biol 419:69–91

    Article  CAS  PubMed  Google Scholar 

  37. Tsai BP, Wang X, Huang L, Waterman ML (2011) Quantitative profiling of in vivo-assembled RNA-protein complexes using a novel integrated proteomic approach. Mol Cell Proteomics 10(4):M110.007385

    Article  PubMed  PubMed Central  Google Scholar 

  38. Slobodin B, Gerst JE (2010) A novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes. RNA 16:2277–2290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bertrand E et al (1998) Localization of ASH1 mRNA particles in living yeast. Mol Cell 2:437–445

    Article  CAS  PubMed  Google Scholar 

  40. Beach DL, Salmon ED, Bloom K (1999) Localization and anchoring of mRNA in budding yeast. Curr Biol 9:569–578

    Article  CAS  PubMed  Google Scholar 

  41. Haim L, Zipor G, Aronov S, Gerst JE (2007) A genomic integration method to visualize localization of endogenous mRNAs in living yeast. Nat Methods 4:409–412

    Article  CAS  PubMed  Google Scholar 

  42. Iribarren AM et al (1990) 2′-O-alkyl oligoribonucleotides as antisense probes. Proc Natl Acad Sci U S A 87:7747–7751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lingner J, Cech TR (1996) Purification of telomerase from Euplotes aediculatus: requirement of a primer 3′ overhang. Proc Natl Acad Sci U S A 93:10712–10717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schnapp G, Rodi HP, Rettig WJ, Schnapp A, Damm K (1998) One-step affinity purification protocol for human telomerase. Nucleic Acids Res 26:3311–3313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kurth I, Cristofari G, Lingner J (2008) An affinity oligonucleotide displacement strategy to purify ribonucleoprotein complexes applied to human telomerase. Methods Mol Biol 488:9–22

    Article  CAS  PubMed  Google Scholar 

  46. Namy O, Moran SJ, Stuart DI, Gilbert RJ, Brierley I (2006) A mechanical explanation of RNA pseudoknot function in programmed ribosomal frameshifting. Nature 441:244–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eliseev B et al (2018) Structure of a human cap-dependent 48S translation pre-initiation complex. Nucleic Acids Res 46:2678–2689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kleppe K, Van de Sande JH, Khorana HG (1970) Polynucleotide ligase-catalyzed joining of deoxyribo-oligonucleotides on ribopolynucleotide templates and of ribo-oligonucleotides on deoxyribopolynucleotide templates. Proc Natl Acad Sci U S A 67:68–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moore MJ, Sharp PA (1992) Site-specific modification of pre-mRNA: the 2′-hydroxyl groups at the splice sites. Science 256:992–997

    Article  CAS  PubMed  Google Scholar 

  50. Moore MJ, Query CC (2000) Joining of RNAs by splinted ligation. Methods Enzym 317:109–123

    Article  CAS  Google Scholar 

  51. Fareed GC, Wilt EM, Richardson CC (1971) Enzymatic breakage and joining of deoxyribonucleic acid. 8. Hybrids of ribo- and deoxyribonucleotide homopolymers as substrates for polynucleotide ligase of bacteriophage T4. J Biol Chem 246:925–932

    Article  CAS  PubMed  Google Scholar 

  52. Prongidi-Fix L et al (2013) Rapid purification of ribosomal particles assembled on histone H4 mRNA: a new method based on mRNA-DNA chimaeras. Biochem J 449:719–728

    Article  CAS  PubMed  Google Scholar 

  53. Chicher J et al (2015) Purification of mRNA-programmed translation initiation complexes suitable for mass spectrometry analysis. Proteomics 15:2417–2425

    Article  CAS  PubMed  Google Scholar 

  54. Martin F et al (2016) Ribosomal 18S rRNA base pairs with mRNA during eukaryotic translation initiation. Nat Commun 7:12622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Gross L et al (2017) The IRES 5′UTR of the dicistrovirus cricket paralysis virus is a type III IRES containing an essential pseudoknot structure. Nucleic Acids Res 45:8993–9004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Torchia C, Takagi Y, Ho CK (2008) Archaeal RNA ligase is a homodimeric protein that catalyzes intramolecular ligation of single-stranded RNA and DNA. Nucleic Acids Res 36:6218–6227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zhelkovsky AM, McReynolds LA (2012) Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase – engineering a thermostable ATP independent enzyme. BMC Mol Biol 13:24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Viollet S, Fuchs RT, Munafo DB, Zhuang F, Robb GB (2011) T4 RNA ligase 2 truncated active site mutants: improved tools for RNA analysis. BMC Biotechnol 11:72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors are supported by institutional funds from the Centre National de la Recherche Scientifique (CNRS), the Université de Strasbourg, and grant ANR-17-CE11-0024-01 and ANR-17-CE12-0025-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Eriani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Janvier, A. et al. (2024). Purification of In Vivo or In Vitro-Assembled RNA-Protein Complexes by RNA Centric Methods. In: Vega, M.C., Fernández, F.J. (eds) Advanced Technologies for Protein Complex Production and Characterization. Advances in Experimental Medicine and Biology, vol 3234. Springer, Cham. https://doi.org/10.1007/978-3-031-52193-5_2

Download citation

Publish with us

Policies and ethics