Skip to main content

Developing Alternative Multilinear Regression-Based Intelligence Hybrid Model

  • Chapter
  • First Online:
Progressive Decision-Making Tools and Applications in Project and Operation Management

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 518))

  • 109 Accesses

Abstract

The study focuses on improving quantitative structure–property relationships (QSPR) simulation for mycotoxins by employing multi-oriented data-intelligent approaches. While previous methods only considered the molecular structure, this study aims to overcome this limitation using four data-driven model approaches based on mycotoxins’ retention time (tR). The goal is to leverage the correlation between various molecular properties and develop a hybrid intelligence-based model. The three hybrid intelligence models examined in this study are MLR-SVM, MLR-ANN, and MLR-ANFIS. Four molecular properties, namely retention index, peak symmetry, mono isotopic mass, and relative sensitivity factor, are selected as input variables for modelling. The relationships between the input and output parameters are measured using Spearman Pearson correlation. Several metrics are employed to evaluate the fitness, performance, and adequacy of the models. These include the coefficient of determination, root mean square error, mean square error and correlation coefficient. The results indicate that the ANFIS model outperformed the other three single models (MLR, SVM, and ANN). Furthermore, the hybrid models outperformed the single models, with the hybrid model MLR-ANFIS being the adequate hybrid model. Based on these findings, the hybrid MLR-ANFIS intelligence model could be an alternative high-performance model for simulating QSPR in mycotoxins. This highlights the potential of using hybrid intelligence approaches that combine multiple techniques to enhance the accuracy and effectiveness of QSPR simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khosrokhavar, R., Ghasemi, J.B., Shiri, F.: 2D Quantitative Structure-property relationship study of mycotoxins by multiple linear regression and support vector machine. Int. J. Mol. Sci. 11, 3052–3068 (2010). https://doi.org/10.3390/ijms11093052

    Article  Google Scholar 

  2. Magan, N., Aldred, D.: Post-harvest control strategies: minimizing mycotoxins in the food chain. Int. J. Food Microbiol. 119, 131–139 (2007). https://doi.org/10.1016/j.ijfoodmicro.2007.07.034

  3. Magan, M., Olsen, N.: Mycotoxins in food: detection and control woodhead publishing series in food science (1994)

    Google Scholar 

  4. El-Nezami, H., Kankaanpaa, P., Salminen, S., Ahokas, J.: Ability of dairy strains of lactic acid bacteria to bind a common food carcinogen, aflatoxin B1. Food Chem. Toxicol. 36, 321–326 (1998). https://doi.org/10.1016/S0278-6915(97)00160-9

  5. Stangierski, J., Weiss, D., Kaczmarek, A.: Multiple regression models and Artificial Neural Network (ANN) as prediction tools of changes in overall quality during the storage of spreadable processed Gouda cheese. Eur. Food Res. Technol. 245, 2539–2547 (2019). https://doi.org/10.1007/s00217-019-03369-y

    Article  Google Scholar 

  6. Adesina, K.: Mycotoxins-causes, prevention and control: mathematical modeling strategies. Fungal Territ. 4 (2021). https://doi.org/10.36547/ft.337

  7. Afsah-Hejri, L., Hajeb, P., Ehsani, R.J.: Application of ozone for degradation of mycotoxins in food: a review. Compr. Rev. Food Sci. Food Saf. 19, 1777–1808 (2020). https://doi.org/10.1111/1541-4337.12594

    Article  Google Scholar 

  8. Ayofemi Olalekan Adeyeye, S.: Aflatoxigenic fungi and mycotoxins in food: a review. Crit. Rev. Food Sci. Nutr. 60, 709–721 (2020). https://doi.org/10.1080/10408398.2018.1548429

  9. Foerster, C., Muñoz, K., Delgado-Rivera, L., Rivera, A., Cortés, S., Müller, A., Arriagada, G., Ferreccio, C., Rios, G.: Occurrence of relevant mycotoxins in food commodities consumed in Chile. Mycotoxin Res. 36, 63–72 (2020). https://doi.org/10.1007/s12550-019-00369-5

    Article  Google Scholar 

  10. Colombo, R., Papetti, A.: Pre-concentration and analysis of mycotoxins in food samples by capillary electrophoresis. Molecules 25, 1–19 (2020). https://doi.org/10.3390/molecules25153441

    Article  Google Scholar 

  11. Bauchet, J., Prieto, S., Ricker-Gilbert, J.: Improved drying and storage practices that reduce aflatoxins in stored maize: experimental evidence from smallholders in Senegal. Am. J. Agric. Econ. 00, 1–21 (2020). https://doi.org/10.1111/ajae.12106

    Article  Google Scholar 

  12. Abdelhaliem, E., Al-Otaibi, H.: Modulation of ochratoxins a-induced genotoxicity in phaseolus vulgaris by multi-walled carbon nanotubes evaluated by phenotypic, cellular ultrastructure, and nuclear dna bioassays. Genet. Mol. Res. 19, 1–33 (2020). https://doi.org/10.4238/gmr18509

    Article  Google Scholar 

  13. Roohi, R., Hashemi, S.M.B., Mousavi Khaneghah, A.: Kinetics and thermodynamic modelling of the aflatoxins decontamination: a review. Int. J. Food Sci. Technol. 1–8 (2020). https://doi.org/10.1111/ijfs.14689

  14. El-Shahir, A.A., Abdel-Sater, M.A., Yassein, A.S.: Lipolysis activity of aflatoxins and ochratoxins producing fungal strains contaminating fresh cow meat. Biosci. Biotechnol. Res. Asia 17, 163–172 (2020). https://doi.org/10.13005/bbra/2821

  15. Veenaas, C., Linusson, A., Haglund, P.: Retention-time prediction in comprehensive two-dimensional gas chromatography to aid identification of unknown contaminants. Anal. Bioanal. Chem. 410, 7931–7941 (2018). https://doi.org/10.1007/s00216-018-1415-x

    Article  Google Scholar 

  16. Dankovich, R.S.: Clinical sings and pathomorphologic changes of pigs by the spontaneous ochratoxicosis. Sci. Messenger LNU Vet. Med. Biotechnol. 21, 75–80 (2019). https://doi.org/10.32718/nvlvet9613

  17. Bull, A.T., Ward, A.C., Goodfellow, M.: Search and discovery strategies for biotechnology: the paradigm shift. Microbiol. Mol. Biol. Rev. 64, 573–606 (2000). https://doi.org/10.1128/mmbr.64.3.573-606.2000

    Article  Google Scholar 

  18. Martin, L., White, M.P., Hunt, A., Richardson, M., Pahl, S., Burt, J.: Nature contact, nature connectedness and associations with health, wellbeing and pro-environmental behaviours. J. Environ. Psychol. 68, 101389 (2020). https://doi.org/10.1016/j.jenvp.2020.101389

  19. Corley, D.G., Miller-Wideman, M., Durley, R.C.: Isolation and structure of Harzianum A: a new trichothecene from Trichoderma harzianum. J. Nat. Prod. 57, 422–425 (1994). https://doi.org/10.1021/np50105a019

    Article  Google Scholar 

  20. Dorner, J.W., Cole, R.J.: Effect of application of nontoxigenic strains of Aspergillus flavus and A. parasiticus on subsequent aflatoxin contamination of peanuts in storage. J. Stored Prod. Res. 38, 329–339 (2002). https://doi.org/10.1016/S0022-474X(01)00035-2

  21. Xiong, Y., Zhang, P., Warner, R.D., Shen, S., Johnson, S., Fang, Z.: Comprehensive profiling of phenolic compounds by HPLC-DAD-ESI-QTOF-MS/MS to reveal their location and form of presence in different sorghum grain genotypes. Food Res. Int. 137, 109671 (2020). https://doi.org/10.1016/j.foodres.2020.109671

    Article  Google Scholar 

  22. Ostertag, F., Schmidt, C.M., Berensmeier, S., Hinrichs, J.: Development and validation of an RP-HPLC DAD method for the simultaneous quantification of minor and major whey proteins. Food Chem. 128176 (2020). https://doi.org/10.1016/j.foodchem.2020.128176

  23. Sparkman, O.D.: GC/MS: a practical user’s guide, 2nd edn Marvin McMaster. J. Am. Soc. Mass Spectrom. 19, R1–R5 (2008). https://doi.org/10.1016/j.jasms.2008.05.001

  24. Adamson, G.E., Lazarus, S.A., Mitchell, A.E., Prior, R.L., Cao, G., Jacobs, P.H., Kremers, B.G., Hammerstone, J.F., Rucker, R.B., Ritter, K.A., Schmitz, H.H.: HPLC method for the quantification of procyanidins in cocoa and chocolate samples and correlation to total antioxidant capacity. J. Agric. Food Chem. 47, 4184–4188 (1999). https://doi.org/10.1021/jf990317m

    Article  Google Scholar 

  25. Biswas, A.K., Rao, G.S., Kondaiah, N., Anjaneyulu, A.S.R., Mendiratta, S.K., Prasad, R., Malik, J.K.: A simple multi-residue method for determination of oxytetracycline, tetracycline and chlortetracycline in export buffalo meat by HPLC-photodiode array detector. J. Food Drug Anal. 15, 278–284 (2007). https://doi.org/10.38212/2224-6614.2419

  26. Zapata, M., Rodríguez, F., Garrido, J.L.: Separation of chlorophylls and carotenoids from marine phytoplankton: a new HPLC method using a reversed phase C8 column and pyridine-containing mobile phases. Mar. Ecol. Prog. Ser. 195, 29–45 (2000). https://doi.org/10.3354/meps195029

    Article  Google Scholar 

  27. Wang, M., Jarmusch, A.K., Vargas, F., Aksenov, A.A., Gauglitz, M., Weldon, K., Petras, D., Silva, R., Quinn, R., Alexey, V., Van Der Hooft, J.J.J., Mauricio, A., Rodríguez, C., Felix, L., Aceves, C.M., Panitchpakdi, M., Brown, E., Di, F., Sikora, N., Elijah, E.O., Labarta-bajo, L., Gentry, E.C.: HHS Public Access 38, 23–26 (2020). https://doi.org/10.1038/s41587-019-0375-9.Mass

    Article  Google Scholar 

  28. Cui, J.J., Wang, L.Y., Tan, Z.R., Zhou, H.H., Zhan, X., Yin, J.Y.: Mass spectrometry-based personalized drug therapy. Mass Spectrom. Rev. 39, 523–552 (2020). https://doi.org/10.1002/mas.21620

    Article  Google Scholar 

  29. Liu, X.R., Zhang, M.M., Gross, M.L.: Mass spectrometry-based protein footprinting for higher-order structure analysis: fundamentals and applications. Chem. Rev. (2020). https://doi.org/10.1021/acs.chemrev.9b00815

    Article  Google Scholar 

  30. Nielsen, K.F., Smedsgaard, J.: Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J. Chromatogr. A. 1002, 111–136 (2003). https://doi.org/10.1016/S0021-9673(03)00490-4

  31. Eckers, C., Wolff, J.-C., Haskins, N.J., Sage, A.B., Giles, K., Bateman, R.: Accurate mass liquid chromatography/mass spectrometry on orthogonal acceleration time-of-flight mass analyzers using switching between separate sample and reference sprays. 1. Proof of Concept, Anal. Chem. 72, 3683–3688 (2000). https://doi.org/10.1021/ac000448i

  32. Hopfgartner, G., Vilbois, F.: The impact of accurate mass measurements using quadrupole/time-of-flight mass spectrometry on the characterisation and screening of drug metabolites. Analusis 28, 906–914 (2000). https://doi.org/10.1051/analusis:2000280906

    Article  Google Scholar 

  33. Xuan, Q., Zheng, F., Yu, D., Ouyang, Y., Zhao, X., Hu, C., Xu, G.: Rapid lipidomic profiling based on ultra-high performance liquid chromatography–mass spectrometry and its application in diabetic retinopathy. Anal. Bioanal. Chem. 412, 3585–3594 (2020). https://doi.org/10.1007/s00216-020-02632-6

    Article  Google Scholar 

  34. Yoshikawa, K., Furuno, M., Tanaka, N., Fukusaki, E.: Fast enantiomeric separation of amino acids using liquid chromatography/mass spectrometry on a chiral crown ether stationary phase. J. Biosci. Bioeng. 130, 437–442 (2020). https://doi.org/10.1016/j.jbiosc.2020.05.007

    Article  Google Scholar 

  35. Wang, X.: Magnetic bead-based immunoassays for Aflatoxin B1 using biofunctionalized gold nanoparticles (2015)

    Google Scholar 

  36. Wang, Y., Zhang, C., Wang, J., Knopp, D.: Recent progress in rapid determination of mycotoxins based on emerging biorecognition molecules: a review. Toxins (Basel) 14 (2022). https://doi.org/10.3390/toxins14020073

  37. Solgi, A., Pourhaghi, A., Bahmani, R., Zarei, H.: Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD). Ecohydrol. Hydrobiol. 17, 164–175 (2017). https://doi.org/10.1016/j.ecohyd.2017.02.002

    Article  Google Scholar 

  38. Ma, J., Cai, J., Lin, G., Chen, H., Wang, X., Wang, X., Hu, L.: Development of LC-MS determination method and back-propagation ANN pharmacokinetic model of corynoxeine in rat. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 959, 10–15 (2014). https://doi.org/10.1016/j.jchromb.2014.03.024

  39. D’Archivio, A.A., Giannitto, A., Maggi, M.A.: Cross-column prediction of gas-chromatographic retention of polybrominated diphenyl ethers. J. Chromatogr. A 1298, 118–131 (2013). https://doi.org/10.1016/j.chroma.2013.05.018

    Article  Google Scholar 

  40. Lotfi, E., Akbarzadeh-T., M.R.: Adaptive brain emotional decayed learning for online prediction of geomagnetic activity indices. Neurocomputing 126, 188–196 (2014). https://doi.org/10.1016/j.neucom.2013.02.040

  41. Ahmed, A.A.M., Mustakim, S., Shah, A.: Application of adaptive neuro-fuzzy inference system (ANFIS) to estimate the biochemical oxygen demand (BOD) of Surma River. J. King Saud Univ. Eng. Sci. 29, 237–243 (2017). https://doi.org/10.1016/j.jksues.2015.02.001

    Article  Google Scholar 

  42. Tao, Y., Wang, Y., Pan, M., Zhong, S., Wu, Y., Yang, R., Han, Y., Zhou, J.: Combined ANFIS and numerical methods to simulate ultrasound-assisted extraction of phenolics from chokeberry cultivated in China and analysis of phenolic composition. Sep. Purif. Technol. 178, 178–188 (2017). https://doi.org/10.1016/j.seppur.2017.01.012

    Article  Google Scholar 

  43. Saini, R., Kumar, P.: Optimization of chlorpyrifos degradation by Fenton oxidation using CCD and ANFIS computing technique. J. Environ. Chem. Eng. 4, 2952–2963 (2016). https://doi.org/10.1016/j.jece.2016.06.003

    Article  Google Scholar 

  44. Gaya, M.S., Abdul Wahab, N., Sam, Y.M., Samsudin, S.I.: ANFIS modelling of carbon and nitrogen removal in domestic wastewater treatment plant. J. Teknol. 67 (2014). https://doi.org/10.11113/jt.v67.2839

  45. Vapnik, V.: The nature of statistical learning theory. 188 (1995). https://doi.org/10.1007/978-1-4757-2440-0

  46. Haghiabi, A.H., Azamathulla, H.M., Parsaie, A.: Prediction of head loss on cascade weir using ANN and SVM. ISH J. Hydraul. Eng. 23, 102–110 (2017). https://doi.org/10.1080/09715010.2016.1241724

    Article  Google Scholar 

  47. Elkiran, G., Nourani, V., Abba, S.I.: Multi-step ahead modelling of river water quality parameters using ensemble artificial intelligence-based approach. J. Hydrol. 577, 123962 (2019). https://doi.org/10.1016/j.jhydrol.2019.123962

    Article  Google Scholar 

  48. Su, M., Zhang, Z., Zhu, Y., Zha, D.: Data-driven natural gas spot price forecasting with least squares regression boosting algorithm. Energies 12 (2019). https://doi.org/10.3390/en12061094

  49. Sharghi, E., Nourani, V., Behfar, N.: Earthfill dam seepage analysis using ensemble artificial intelligence based modeling. J. Hydroinformatics. 20, 1071–1084 (2018). https://doi.org/10.2166/hydro.2018.151

    Article  Google Scholar 

  50. Lee, J.K., Han, W.S., Lee, J.S., Yoon, C.N.: A novel computational method for biomedical binary data analysis: development of a thyroid disease index using a brute-force search with MLR analysis. Bull. Korean Chem. Soc. 38, 1392–1397 (2017). https://doi.org/10.1002/bkcs.11308

    Article  Google Scholar 

  51. Li, H., Yazdi, M. (eds.): Advanced Decision-Making Neutrosophic Fuzzy Evidence-Based Best–Worst Method BT—Advanced Decision-Making Methods and Applications in System Safety and Reliability Problems: Approaches, Case Studies, Multi-criteria Decision-Making, Multi-objective Decision, pp. 153–184. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-07430-1_9

  52. Khademi, F., Behfarnia, K.: Evaluation of concrete compressive strength using artificial neural network and multiple linear regression models. Iust 6, 423–432 (2016)

    Google Scholar 

  53. Kazemi, P., Khalid, M.H., Szlek, J., Mirtič, A., Reynolds, G.K., Jachowicz, R., Mendyk, A.: Computational intelligence modeling of granule size distribution for oscillating milling. Powder Technol. 301, 1252–1258 (2016). https://doi.org/10.1016/j.powtec.2016.07.046

    Article  Google Scholar 

  54. Ghaedi, M., Hosaininia, R., Ghaedi, A.M., Vafaei, A., Taghizadeh, F.: Adaptive neuro-fuzzy inference system model for adsorption of 1,3,4-thiadiazole-2,5-dithiol onto gold nanoparticales-activated carbon, Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 131, 606–614 (2014). https://doi.org/10.1016/j.saa.2014.03.055

  55. Marrero-Ponce, Y., Barigye, S.J., Jorge-Rodríguez, M.E., Tran-Thi-Thu, T.: QSRR prediction of gas chromatography retention indices of essential oil components. Chem. Pap. 72, 57–69 (2018). https://doi.org/10.1007/s11696-017-0257-x

    Article  Google Scholar 

  56. Park, S.H., Haddad, P.R., Talebi, M., Tyteca, E., Amos, R.I.J., Szucs, R., Dolan, J.W., Pohl, C.A.: Retention prediction of low molecular weight anions in ion chromatography based on quantitative structure-retention relationships applied to the linear solvent strength model. J. Chromatogr. A 1486, 68–75 (2017). https://doi.org/10.1016/j.chroma.2016.12.048

    Article  Google Scholar 

  57. Chandwani, V., Vyas, S.K., Agrawal, V., Sharma, G.: Soft computing approach for rainfall-runoff modelling: a review. Aquat. Procedia. 4, 1054–1061 (2015). https://doi.org/10.1016/j.aqpro.2015.02.133

    Article  Google Scholar 

  58. Yaseen, Z.M., Ehteram, M., Hossain, M.S., Fai, C.M., Koting, S.B., Mohd, N.S., Jaafar, W.Z.B., Afan, H.A., Hin, L.S., Zaini, N., Ahmed, A.N., El-Shafie, A.: A novel hybrid evolutionary data-intelligence algorithm for irrigation and power production management: application to multi-purpose reservoir systems. Sustainability 11 (2019). https://doi.org/10.3390/su11071953

  59. Yaseen, Z.M., Ghareb, M.I., Ebtehaj, I., Bonakdari, H., Siddique, R., Heddam, S., Yusif, A.A., Deo, R.: Rainfall pattern forecasting using novel hybrid intelligent model based ANFIS-FFA. Water Resour. Manag. 32, 105–122 (2018). https://doi.org/10.1007/s11269-017-1797-0

    Article  Google Scholar 

  60. Pham, Q.B., Abba, S.I., Usman, A.G., Thi, N., Linh, T.: Potential of hybrid data-intelligence algorithms for multi-station modelling of rainfall (2019)

    Google Scholar 

  61. Lola, M.S., Noor, M., Ramlee, A., Gunalan, G.S., Zainuddin, N.H., Zakariya, R., Idris, M., Khalil, I.: Improved the prediction of multiple linear regression model performance using the hybrid approach: a case study of chlorophyll-a at the offshore Kuala Terengganu. Terengganu (2016). https://doi.org/10.4236/ojs.2016.65065

    Article  Google Scholar 

  62. Daneshvar, S., Adesina, K.A.: Modified variable return to scale back-propagation neural network robust parameter optimization procedure for multi-quality processes. Eng. Optim. 51, 1352–1369 (2019). https://doi.org/10.1080/0305215X.2018.1524463

    Article  Google Scholar 

  63. Yazdi, M., Golilarz, N.A., Nedjati, A., Adesina, K.A.: An improved lasso regression model for evaluating the efficiency of intervention actions in a system reliability analysis. Neural Comput. Appl. (2021). https://doi.org/10.1007/s00521-020-05537-8

    Article  Google Scholar 

  64. Huang, C.-G., Men, C., Yazdi, M., Han, Y., Peng, W.: Transfer fault prognostic for rolling bearings across different working conditions: a domain adversarial perspective. Int. J. Adv. Manuf. Technol. (2022). https://doi.org/10.1007/s00170-022-09452-1

    Article  Google Scholar 

  65. Li, H., Peng, W., Adumene, S., Yazdi, M.: Intelligent Reliability and Maintainability of Energy Infrastructure Assets. Springer Nature Switzerland (2023)

    Google Scholar 

  66. Gözen, D., Çaka, S.Y., Beşirik, S.A., Perk, Y.: First bathing time of newborn infants after birth: a comparative analysis. J. Spec. Pediatr. Nurs. 24, e12239 (2019). https://doi.org/10.1111/jspn.12239

  67. Pfeifer, J.H., Lieberman, M.D., Dapretto, M.: “I know you are but what am i?!”: neural bases of self- and social knowledge retrieval in children and adults. J. Cogn. Neurosci. 19, 1323–1337 (2007). https://doi.org/10.1162/jocn.2007.19.8.1323

    Article  Google Scholar 

  68. Nourani, V., Molajou, A., Uzelaltinbulat, S., Sadikoglu, F.: Emotional artificial neural networks (EANNs) for multi-step ahead prediction of monthly precipitation; case study: northern Cyprus. Theor. Appl. Climatol. 138, 1419–1434 (2019). https://doi.org/10.1007/s00704-019-02904-x

    Article  Google Scholar 

  69. Ghali Muhammad, U., Alhosen, M., Alsharksi Çankırı Karatekin Üniversitesi, A., Hoti, Q., Muhammad Ghali, U., Alhosen Ali Degm, M., Nouri Alsharksi, A., Garba Usman, A.: Development of computational intelligence algorithms for modelling the performance of humanin and its derivatives in HPLC optimization method development simulation of various active ingredients in HPLC method development using artificial intelligence models view project development of computational intelligence algorithms for modelling the performance of humanin and its derivatives in HPLC optimization method development. Artic. Int. J. Sci. Technol. Res. 9:110–117 (2020). www.ijstr.org

  70. Abba, S.I., Usman, A.G., IŞIK, S.: Simulation for response surface in the HPLC optimization method development using artificial intelligence models: a data-driven approach. Chemom. Intell. Lab. Syst. 201, 104007 (2020). https://doi.org/10.1016/j.chemolab.2020.104007

  71. Kobayashi, Y., Yoshida, K.: Automated retention time prediction of new psychoactive substances in gas chromatography. Procedia Comput. Sci. 207, 654–663 (2022). https://doi.org/10.1016/j.procs.2022.09.120

    Article  Google Scholar 

  72. Abdullahi, H.U., Usman, A.G., Abba, S.I.: Modelling the absorbance of a bioactive compound in HPLC method using artificial neural network and multilinear regression. Methods 6, 362–371 (2020)

    Google Scholar 

  73. Alsharksi, A.N., Danmaraya, Y.A., Abdullahi, H.U., Ghali, U.M., Usman, A.G.: Potential of hybrid adaptive neuro fuzzy model in simulating clostridium difficile infection status. 1–6 (2020). https://doi.org/10.35940/ijbsac.A0191.073120

  74. Yazdi, M., Nedjati, A., Zarei, E., Abbassi, R.: Chapter 6—application of multi-criteria decision-making tools for a site analysis of offshore wind turbines. In: Asadnia, M., Razmjou, A., Beheshti, ABT-AI and DS in ES (eds.) Cognitive Data Science in Sustainable Computing, pp. 109–127. Academic Press (2022). https://doi.org/10.1016/B978-0-323-90508-4.00008-3

  75. Nedjati, A., Yazdi, M., Abbassi, R.: A Sustainable Perspective of Optimal Site Selection of Giant Air—Purifiers in Large Metropolitan Areas. Springer Netherlands (2021). https://doi.org/10.1007/s10668-021-01807-0

  76. Golilarz, N.A., Gao, H., Pirasteh, S., Yazdi, M., Zhou, J., Fu, Y.: Satellite multispectral and hyperspectral image de-noising with enhanced adaptive generalized gaussian distribution threshold in the wavelet domain. Remote Sens. 13 (2021). https://doi.org/10.3390/rs13010101

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Yazdi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adesina, K.A., Yazdi, M. (2024). Developing Alternative Multilinear Regression-Based Intelligence Hybrid Model. In: Yazdi, M. (eds) Progressive Decision-Making Tools and Applications in Project and Operation Management. Studies in Systems, Decision and Control, vol 518. Springer, Cham. https://doi.org/10.1007/978-3-031-51719-8_6

Download citation

Publish with us

Policies and ethics