Skip to main content

Preliminary Study of Cerebral Myelin Content Alterations at Schizophrenia

  • Conference paper
  • First Online:
Biologically Inspired Cognitive Architectures 2023 (BICA 2023)

Abstract

At the moment, the study of the association of different brain areas with schizophrenia is a thriving field of research. Although the precise mechanisms underlying the development of schizophrenia remain not fully understood, ongoing research enhances our understanding of which areas of the brain may be associated with various symptoms and behavioral disturbances in patients with the disease. Pathological changes in the brain may be accompanied by a decrease in the level of myelin. The results obtained in the present study support the hypothesis of an association between brain myelination and the development of schizophrenia. The present study revealed reduced myelination in the number of areas which can be divided into several groups based on common features. In our work, significant changes were found in the following areas of the brain: Heschl’s Gyrus (includes H1 and H2), Postcentral Gyrus, Lateral Occipital Cortex superior division, Frontal Pole, Paracingulate Gyrus, Inferior frontal gyrus, Middle frontal gyrus. In the future, the results of the study can be used to create a non-invasive quantitative marker of schizophrenia. This will allow, on the one hand, to characterize the current stage of the disease of a particular patient in terms of myelination abnormalities, and on the other hand, it can help shed light on the etiology of this disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Valdés-Tovar, M., Rodríguez-Ramírez, A.M., Rodríguez-Cárdenas, L., et al.: Insights into myelin dysfunction in schizophrenia and bipolar disorder (2022). https://doi.org/10.5498/wjp.v12.i2.264

  2. Takahashi, N., Sakurai, T., Davis, K.L., Buxbaum, J.D.: Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia (2010). https://doi.org/10.1016/j.pneurobio.2010.09.004

  3. Karoutzou, G., Emrich, H.M., Dietrich, D.E.: The myelin-pathogenesis puzzle in schizophrenia: a literature review. Mol. Psychiatry 13(3), 245–260 (2008). https://doi.org/10.1038/sj.mp.4002096. Epub 9 Oct 2007

  4. van den Heuvel, M.P., Fornito, A.: Brain networks in schizophrenia. Neuropsychol. Rev. 24(1), 32–48 (2014). https://doi.org/10.1007/s11065-014-9248-7

  5. Zhou, Y., et al.: Functional dysconnectivity of the dorsolateral prefrontal cortex in first-episode schizophrenia using resting-state fMRI. Neurosci. Lett.. Lett. 417(3), 297–302 (2007). https://doi.org/10.1016/j.neulet.2007.02.081

    Article  Google Scholar 

  6. Salgado-Pined, P., Caclin, A., Baeza, I., Junqué, C., Bernardo, M., Blin, O., Fonlupt, P.: Schizophrenia and frontal cortex: where does it fail? Schizophrenia Res. 91(1–3), 73–81 (2007). https://doi.org/10.1016/j.schres.2006.12.028

  7. Kisel, A.A., Naumova, A.V., Yarnykh, V.L.: Macromolecular Proton Fraction as a Myelin Biomarker: Principles, Validation, and Applications (2022). https://doi.org/10.3389/fnins.2022.819912

  8. Yarnykh, V.L.: Time-efficient, high-resolution, whole brain three-dimensional macromolecular proton fraction mapping (2016). https://doi.org/10.1002/mrm.25811

  9. Smirnova, L.P., Yarnykh, V.L., Parshukova, D.A., Kornetova, E.G., Semke, A.V., Usova, A.V., et al.: Global hypomyelination of the brain white and gray matter in schizophrenia: quantitative imaging using macromolecular proton Fraction. Transl. Psychiatry 11, 365 (2021). https://doi.org/10.1038/s41398-021-01475-8

    Article  Google Scholar 

  10. Underhill, H.R., Rostomily, R.C., Mikheev, A.M., Yuan, C., Yarnykh, V.L.: Fast bound pool fraction imaging of the in vivo rat brain: association with myelin content and validation in the C6 glioma model. NeuroImage 54(3) (2011)

    Google Scholar 

  11. Bartzokis, G.: Neuroglialpharmacology: white matter pathophysiologies and psychiatric treatments

    Google Scholar 

  12. Insel, T.R.: Rethinking schizophrenia. Nature 468(7321), 187–193 (2010). https://doi.org/10.1038/nature09552

    Article  Google Scholar 

  13. Davis, K.L., et al.: White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch. Gen. Psychiatry 60(5), 443–456 (2003). https://doi.org/10.1001/archpsyc.60.5.443

    Article  Google Scholar 

  14. Sui, Y.V., et al.: Quantitative macromolecular proton fraction mapping reveals altered cortical myelin profile in schizophrenia spectrum disorders. Cerebral Cortex Commun. 2(2), tgab015 (2021). https://doi.org/10.1093/texcom/tgab015

  15. Wei, W., et al.: Depth-dependent abnormal cortical myelination in first-episode treatment-naïve schizophrenia. Hum. Brain Mapp. 41(10), 2782–2793 (2020). https://doi.org/10.1002/hbm.24977

    Article  Google Scholar 

  16. Vanes, L.D., Mouchlianitis, E., Barry, E., et al.: Cognitive correlates of abnormal myelination in psychosis. Sci. Rep. 9, 5162 (2019). https://doi.org/10.1038/s41598-019-41679-z

    Article  Google Scholar 

  17. Palaniyappan, L., Al-Radaideh, A., Mougin, O., Das, T., Gowland, P., Liddle, P.F.: Aberrant myelination of the cingulum and Schneiderian delusions in schizophrenia: a 7T magnetization transfer study. Psychol. Med. 49(11), 1890–1896 (2019). https://doi.org/10.1017/S0033291718002647. Epub 19 Sept 2018

  18. Shimamoto-Mitsuyama, C., Nakaya, A., Esaki, K., et al.: Lipid pathology of the corpus callosum in schizophrenia and the potential role of abnormal gene regulatory networks with reduced microglial marker expression. Cereb. Cortex. Cortex 31(1), 448–462 (2021). https://doi.org/10.1093/cercor/bhaa236

    Article  Google Scholar 

  19. Schwarz, E., et al.: High throughput lipidomic profiling of schizophrenia and bipolar disorder brain tissue reveals alterations of free fatty acids, phosphatidylcholines, and ceramides. J. Proteome Res. 7, 4266–4277 (2008). https://doi.org/10.1021/pr800188y

    Article  Google Scholar 

  20. Matsumoto, J., et al.: Abnormal phospholipids distribution in the prefrontal cortex from a patient with schizophrenia revealed by matrix-assisted laser desorption/ionization imaging mass spectrometry. Anal. Bioanal. Chem. 400(7), 1933–1943 (2011). https://doi.org/10.1007/s00216-011-4909-3. Epub 2 Apr 2011

  21. Schmitt, A., et al.: Altered thalamic membrane phospholipids in schizophrenia: a postmortem study. Biol. Psychiatry 56(1), 41–45 (2004). https://doi.org/10.1016/j.biopsych.2004.03.019

    Article  Google Scholar 

  22. Schneider, M., Levant, B., Reichel, M., Gulbins, E., Kornhuber, J., Müller, C.P.: Lipids in psychiatric disorders and preventive medicine. Neurosci. Biobehav. Rev. 76(Pt B), 336–362 (2017). https://doi.org/10.1016/j.neubiorev.2016.06.002. Epub 16 Jun 2016

Download references

Acknowledgements

This work was in part supported by Russian Science Foundation grant â„– 20-15-00299-P (https://rscf.ru/en/project/20-15-00299-P/, data acquisition, statistical and neurophysiological analysis) and grant â„– 22-11-00213 (data preprocessing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Krupina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krupina, E. et al. (2024). Preliminary Study of Cerebral Myelin Content Alterations at Schizophrenia. In: Samsonovich, A.V., Liu, T. (eds) Biologically Inspired Cognitive Architectures 2023. BICA 2023. Studies in Computational Intelligence, vol 1130. Springer, Cham. https://doi.org/10.1007/978-3-031-50381-8_51

Download citation

Publish with us

Policies and ethics