Skip to main content

Electricity Load and Peak Forecasting: Feature Engineering, Probabilistic LightGBM and Temporal Hierarchies

  • Conference paper
  • First Online:
Advanced Analytics and Learning on Temporal Data (AALTD 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14343))

  • 176 Accesses

Abstract

We describe our experience in developing a predictive model that placed a high position in the BigDEAL Challenge 2022, an energy competition of load and peak forecasting. We present a novel procedure for feature engineering and feature selection, based on cluster permutation of temperatures and calendar variables. We adopted gradient boosting of trees and we enhanced its capabilities with trend modeling and distributional forecasts. We also included an approach to forecasts combination known as temporal hierarchies, which further improves the accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2623–2631 (2019)

    Google Scholar 

  2. Armstrong, J.S., Collopy, F.: Error measures for generalizing about forecasting methods: empirical comparisons. Int. J. Forecast. 8(1), 69–80 (1992)

    Article  Google Scholar 

  3. Athanasopoulos, G., Hyndman, R.J., Kourentzes, N., Petropoulos, F.: Forecasting with temporal hierarchies. Eur. J. Oper. Res. 262(1), 60–74 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for time series forecasting. Business Intelligence: Second European Summer School, eBISS 2012, Brussels, Belgium, July 15–21, 2012, Tutorial Lectures, pp. 62–77 (2013)

    Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  6. Carlens, H.: State of competitive machine learning in 2022 (2022). mlcontests.com/state-of-competitive-machine-learning-2022/. Accessed 01 Apr 2023

  7. Charlton, N., Singleton, C.: A refined parametric model for short term load forecasting. Int. J. Forecast. 30(2), 364–368 (2014)

    Article  Google Scholar 

  8. Corani, G., Azzimonti, D., Augusto, J.P., Zaffalon, M.: Probabilistic reconciliation of hierarchical forecast via bayes’ rule. In: Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III, pages 211–226. Springer, 2021

    Google Scholar 

  9. Duan, T., Anand, A., Ding, D.Y., Thai, K.K., Basu, S., Ng, A., Schuler, A.: Ngboost: Natural gradient boosting for probabilistic prediction. In International Conference on Machine Learning, pp. 2690–2700. PMLR (2020)

    Google Scholar 

  10. Erişti, H., Uçar, A., Demir, Y.: Wavelet-based feature extraction and selection for classification of power system disturbances using support vector machines. Electric Power Syst. Res. 80(7), 743–752 (2010)

    Article  Google Scholar 

  11. Friedman, J.H.: Stochastic gradient boosting. Comput. Stat. Data Anal. 38(4), 367–378 (2002)

    Article  MathSciNet  Google Scholar 

  12. Gaillard, P., Goude, Y., Nedellec, R.: Additive models and robust aggregation for gefcom2014 probabilistic electric load and electricity price forecasting. Int. J. Forecast. 32(3), 1038–1050 (2016)

    Article  Google Scholar 

  13. Gneiting, T.: Quantiles as optimal point forecasts. Int. J. Forecast. 27(2), 197–207 (2011)

    Article  Google Scholar 

  14. Gneiting, T., Raftery, A.E., Westveld, A.H., Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics and minimum crps estimation. Mon. Weather Rev. 133(5), 1098–1118 (2005)

    Article  Google Scholar 

  15. Gregorutti, B., Michel, B., Saint-Pierre, P.: Correlation and variable importance in random forests. Stat. Comput. 27, 659–678 (2017)

    Article  MathSciNet  Google Scholar 

  16. Hong, T.: BigDeal Challenge 2022, Final Match. blog.drhongtao.com/2022/12/bigdeal-challenge-2022-final-leaderboard.html. Accessed 09 Apr 2023

  17. Hong, T.: BigDeal Challenge 2022, Qualifying Match. blog.drhongtao.com/2022/11/bigdeal-challenge-2022-qualifying-match.html. Accessed 09 Apr 2023

  18. Hong, T., Pinson, P., Fan, S.: Global energy forecasting competition 2012 (2014)

    Google Scholar 

  19. Hong, T., Pinson, P., Fan, S., Zareipour, H., Troccoli, A., Hyndman, R.J.: Probabilistic energy forecasting: Global energy forecasting competition 2014 and beyond (2016)

    Google Scholar 

  20. Hong, T., Xie, J., Black, J.: Global energy forecasting competition 2017: hierarchical probabilistic load forecasting. Int. J. Forecast. 35(4), 1389–1399 (2019)

    Article  Google Scholar 

  21. Hyndman, R.J., Fan, S.: Density forecasting for long-term peak electricity demand. IEEE Trans. Power Syst. 25(2), 1142–1153 (2009)

    Article  Google Scholar 

  22. James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to statistical learning (2013)

    Google Scholar 

  23. Januschowski, T., Wang, Y., Torkkola, K., Erkkilä, T., Hasson, H., Gasthaus, J.: Forecasting with trees. Int. J. Forecast. 38(4), 1473–1481 (2022)

    Article  Google Scholar 

  24. Kourentzes, N., Athanasopoulos, G.: Elucidate structure in intermittent demand series. Eur. J. Oper. Res. 288(1), 141–152 (2021)

    Article  MathSciNet  Google Scholar 

  25. Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R.P., Tang, J., Liu, H.: Feature selection: a data perspective. ACM Comput. Surv. (CSUR) 50(6), 1–45 (2017)

    Article  Google Scholar 

  26. Lundberg, S.M., Lee, S.-I.: A unified approach to interpreting model predictions. Advances in neural information processing systems, 30 (2017)

    Google Scholar 

  27. März, A.: Xgboostlss-an extension of xgboost to probabilistic forecasting. arXiv preprint arXiv:1907.03178 (2019)

  28. März, A., Kneib, T.: Distributional gradient boosting machines. arXiv preprint arXiv:2204.00778 (2022)

  29. Meinshausen, N., Ridgeway, G.: Quantile regression forests. J. Mach. Learn. Res. 7(6) (2006)

    Google Scholar 

  30. Nespoli, L., Medici, V.: Multivariate boosted trees and applications to forecasting and control. J. Mach. Learn. Res. 23(246), 1–47 (2022)

    MathSciNet  Google Scholar 

  31. Smyl, S., Hua, N.G.: Machine learning methods for gefcom2017 probabilistic load forecasting. Int. J. Forecast. 35(4), 1424–1431 (2019)

    Article  Google Scholar 

  32. Taieb, S.B., Hyndman, R.J.: A gradient boosting approach to the kaggle load forecasting competition. Int. J. Forecast. 30(2), 382–394 (2014)

    Article  Google Scholar 

  33. Vinayak, R.K., Gilad-Bachrach, R.: Dart: dropouts meet multiple additive regression trees. In: Artificial Intelligence and Statistics, pp. 489–497. PMLR (2015)

    Google Scholar 

  34. Wang, Y., Sun, S., Chen, X., Zeng, X., Kong, Y., Chen, J., Guo, Y., Wang, T.: Short-term load forecasting of industrial customers based on svmd and xgboost. Int. J. Electr. Power Energy Syst. 129, 106830 (2021)

    Article  Google Scholar 

  35. Wickramasuriya, S.L., Athanasopoulos, G., Hyndman, R.J.: Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization. J. Am. Stat. Assoc. 114(526), 804–819 (2019)

    Article  MathSciNet  Google Scholar 

  36. Yu, J.: Bearing performance degradation assessment using locality preserving projections and gaussian mixture models. Mech. Syst. Signal Process. 25(7), 2573–2588 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

Work partially funded by the Swiss National Science Foundation (grant 212164), and the ERA-NET Smart Energy Systems program (grant 883973, project Digicities).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolò Rubattu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rubattu, N., Maroni, G., Corani, G. (2023). Electricity Load and Peak Forecasting: Feature Engineering, Probabilistic LightGBM and Temporal Hierarchies. In: Ifrim, G., et al. Advanced Analytics and Learning on Temporal Data. AALTD 2023. Lecture Notes in Computer Science(), vol 14343. Springer, Cham. https://doi.org/10.1007/978-3-031-49896-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-49896-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-49895-4

  • Online ISBN: 978-3-031-49896-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics