Skip to main content

Advances in Understanding Fractals in Affective and Anxiety Disorders

  • Chapter
  • First Online:
The Fractal Geometry of the Brain

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 36))

  • 291 Accesses

Abstract

In this chapter, we review the research that has applied fractal measures to the study of the most common psychological disorders, that is, affective and anxiety disorders. Early studies focused on heart rate, but diverse measures have also been examined, from variations in subjective mood, or hand movements, to electroencephalogram or magnetoencephalogram data. In general, abnormal fractal dynamics in different physiological and behavioural outcomes have been observed in mental disorders. Despite the disparity of variables measured, fractal analysis has shown high sensitivity in discriminating patients from healthy controls. However, and because of this heterogeneity in measures, the results are not straightforward, and more studies are needed in this promising line.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sprott JC. Is chaos good for learning. Nonlinear Dynamics Psychol Life Sci. 2013;17(2):223–32.

    CAS  PubMed  Google Scholar 

  2. Goldberger AL, Rigney DR, West BJ. Chaos and fractals in human physiology. Sci Am. 1990;262(2):42–9.

    Article  CAS  PubMed  Google Scholar 

  3. Yang AC, Tsai SJ. Is mental illness complex? From behavior to brain. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45:253–7.

    Article  Google Scholar 

  4. Aybek S, Ionescu A, Berney A, Chocron O, Aminian K, Vingerhoets FJG. Fractal temporal organisation of motricity is altered in major depression. Psychiatry Res. 2012;200(2–3):288–93.

    Article  PubMed  Google Scholar 

  5. Kojima M, Hayano J, Fukuta H, Sakata S, Mukai S, Ohte N, et al. Loss of fractal heart rate dynamics in depressive hemodialysis patients. Psychosom Med. 2008;70(2):177–85.

    Article  CAS  PubMed  Google Scholar 

  6. Migliorini M, Mendez MO, Bianchi AM. Study of heart rate variability in bipolar disorder: linear and non-linear parameters during sleep. Front Neuroeng. 2012;4:22.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Knapen SE, Li P, Riemersma-Van Der Lek RF, Verkooijen S, Boks MPM, Schoevers RA, et al. Fractal biomarker of activity in patients with bipolar disorder. Psychol Med. 2021;51(9):1562–9.

    Article  PubMed  Google Scholar 

  8. Gottschalk A, Bauer MS, Whybrow PC. Evidence of chaotic mood variation in bipolar dsorder. Arch Gen Psychiatry. 1995;52(11):947–59.

    Article  CAS  PubMed  Google Scholar 

  9. Woyshville MJ, Lackamp JM, Eisengart JA, Gilliland JAM. On the meaning and measurement of affective instability: clues from chaos theory. Biol Psychiatry. 1999;45(3):261–9.

    Article  CAS  PubMed  Google Scholar 

  10. Heiby EM. Assessment of behavioral chaos with a focus on transitions in depression. Psychol Assess. 1995;7(1):10–6.

    Article  Google Scholar 

  11. Moore PJ, Little MA, McSharry PE, Goodwin GM, Geddes JR. Mood dynamics in bipolar disorder. Int J Bipolar Disord. 2014;2(1):11.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Klonowski W, Ciszewski J. Application of chaos theory and fractal analysis for EEG-signal processing in patients with seasonal affective disorder. In: Proceedings 1999 International Symposium on Nonlinear Theory and its Applications (NOLTA‘99), Hawaii, USA. 1999.

    Google Scholar 

  13. Bahrami B, Seyedsadjadi R, Babadi B, Noroozian M. Brain complexity increases in mania. Neuroreport. 2005;16(2):187–91.

    Article  PubMed  Google Scholar 

  14. Akar SA, Kara S, Agambayev S, Bilgiç V. Investigation of EEG signals of patients with major depression using chaotic features | Major Depresyonlu Hastalarin EEG Sinyallerinin Kaotik Özniteliklerle Incelenmesi. In: 2015 Medical Technologies National Conference, TIPTEKNO 2015. 2016.

    Google Scholar 

  15. Čukić M, Stokić M, Radenković S, Ljubisavljević M, Simić S, Savić D. Nonlinear analysis of EEG complexity in episode and remission phase of recurrent depression. Int J Methods Psychiatr Res. 2020;29(2):e1816.

    Article  PubMed  Google Scholar 

  16. Ahmadlou M, Adeli H, Adeli A. Fractality analysis of frontal brain in major depressive disorder. Int J Psychophysiol. 2012;85(2):206–11.

    Article  PubMed  Google Scholar 

  17. Hosseinifard B, Moradi MH, Rostami R. Classifying depression patients and normal subjects using machine learning techniques and nonlinear features from EEG signal. Comput Methods Programs Biomed. 2013;109(3):339–45.

    Article  PubMed  Google Scholar 

  18. Bachmann M, Lass J, Suhhova A, Hinrikus H. Spectral asymmetry and Higuchi’s fractal dimension measures of depression electroencephalogram. Comput Math Methods Med. 2013;2013:251638.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Čukić M, Pokrajac D, Stokić M, Simić S, Radivojević V, Ljubisavljević M. EEG machine learning with Higuchi’s fractal dimension and Sample Entropy as features for successful detection of depression. arXiv preprint arXiv:1803.05985. 2018:1–34. https://doi.org/10.1007/s11571-020-09581-x.

  20. Li Y, Tong S, Liu D, Gai Y, Wang X, Wang J, et al. Abnormal EEG complexity in patients with schizophrenia and depression. Clin Neurophysiol. 2008;119(6):1232–41.

    Article  PubMed  Google Scholar 

  21. Méndez MA, Zuluaga P, Hornero R, Gómez C, Escudero J, Rodríguez-Palancas A, et al. Complexity analysis of spontaneous brain activity: effects of depression and antidepressant treatment. J Psychopharmacol. 2012;26(5):636–43.

    Article  PubMed  Google Scholar 

  22. Fernández A, Gómez C, Hornero R, López-Ibor JJ. Complexity and schizophrenia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;45:267–76.

    Article  Google Scholar 

  23. Georgiev S, Minchev Z, Christova C, Philipova D. EEG fractal dimension measurement before and after human auditory stimulation. Bioautomation. 2009;12:70–81.

    Google Scholar 

  24. Chae JH, Jeong J, Peterson BS, Kim DJ, Bahk WM, Jun TY, et al. Dimensional complexity of the EEG in patients with posttraumatic stress disorder. Psychiatry Res. 2004;131(1):79–89.

    Article  PubMed  Google Scholar 

  25. Gentili C, Vanello N, Cristea I, David D, Ricciardi E, Pietrini P. Proneness to social anxiety modulates neural complexity in the absence of exposure: a resting state fMRI study using Hurst exponent. Psychiatry Res. 2015;232(2):135–44.

    Article  PubMed  Google Scholar 

  26. Yazdi-Ravandi S, Arezooji DM, Matinnia N, Shamsaei F, Ahmadpanah M, Ghaleiha A, et al. Complexity of information processing in obsessive-compulsive disorder based on fractal analysis of eeg signal. EXCLI J. 2021;20:642–54.

    PubMed Central  Google Scholar 

  27. Kawe TNJ, Shadli SM, McNaughton N. Higuchi’s fractal dimension, but not frontal or posterior alpha asymmetry, predicts PID-5 anxiousness more than depressivity. Sci Rep. 2019;9(1):19666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zorick T, Mandelkern MA. Multifractal detrended fluctuation analysis of human EEG: preliminary investigation and comparison with the wavelet transform modulus maxima technique. PLoS One. 2013;8(7):e68360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kantelhardt JW, Zschiegner SA, Koscielny-Bunde E, Havlin S, Bunde A, Stanley HE. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A. 2002;316(1–4):87–114.

    Article  Google Scholar 

  30. Dik OE, Sviatogor IA, Ishinova VA, Nozdrachev AD. Fractal characteristics of the functional state of the brain in patients with anxious phobic disorders. Fiziol Cheloveka. 2012;38(3):30–6.

    CAS  PubMed  Google Scholar 

  31. Tae HH, Yoon U, Kyung JL, Yong WS, Lee JM, In YK, et al. Fractal dimension of cerebral cortical surface in schizophrenia and obsessive-compulsive disorder. Neurosci Lett. 2005;384(1–2):172–6.

    Google Scholar 

  32. de la Torre-Luque A, Balle M, Fiol-Veny A, Llabrés J, Bornas X. Sustained anxiety scores are associated with the fractal dynamics of the heartbeat in early adolescents. Nonlinear Dynamics Psychol Life Sci. 2018;22(3):313–33.

    PubMed  Google Scholar 

  33. Goldberger AL. Non-linear dynamics for clinicians: chaos theory, fractals, and complexity at the bedside. Lancet. 1996;347(9011):1312–4.

    Article  CAS  PubMed  Google Scholar 

  34. Suppes T, Webb A, Carmody T, Gordon E, Gutierrez-Esteinou R, Hudson JI, et al. Is postictal electrical silence a predictor of response to electroconvulsive therapy? J Affect Disord. 1996;41(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  35. Gangadhar BN, Subbakrishna DK, Janakiramaiah N, Motreja S, Narayana Dutt D, Paramehwara G. Post-seizure EEG fractal dimension of first ECT predicts antidepressant response at two weeks. J Affect Disord. 1999;52(1–3):235–8.

    Article  CAS  PubMed  Google Scholar 

  36. Mackey MC, Milton JG. Dynamical diseases. Ann N Y Acad Sci. 1987;504(1):16–32.

    Article  CAS  PubMed  Google Scholar 

  37. Thomasson N, Pezard L, Allilaire JF, Renault B, Martinerie J. Nonlinear EEG changes associated with clinical improvement in depressed patients. Nonlinear Dynamics Psychol Life Sci. 2000;4(3):203–18.

    Article  Google Scholar 

  38. Fingelkurts AA, Fingelkurts AA, Kivisaari R, Pekkonen E, Ilmoniemi RJ, Kähkönen S. The interplay of lorazepam-induced brain oscillations: microstructural electromagnetic study. Clin Neurophysiol. 2004;115(3):674–90.

    Article  PubMed  Google Scholar 

  39. Schallek W, Horst WD, Schlosser W. Mechanisms of action of benzodiazepines. Adv Pharmacol. 1979;16(C):45–87.

    Article  CAS  Google Scholar 

  40. Feshchenko VA, Veselis RA, Reinsel RA, Wronski M. Dependence of midazolam-induced beta rhythm on individual characteristics of alpha rhythm. Electroencephalogr Clin Neurophysiol. 1995;95(2):39–40.

    Article  Google Scholar 

  41. Chouvarda I, Michail E, Kokonozi A, Staner L, Domis N, Maglaveras N. Investigation of sleepiness induced by insomnia medication treatment and sleep deprivation. In: Schmorrow DD, Estabrooke IV, Grootjen M, editors. Foundations of augmented cognition neuroergonomics and operational neuroscience. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 120–7.

    Chapter  Google Scholar 

  42. Michail E, Chouvarda I, Maglaveras N. Benzodiazepine administration effect on EEG fractal dimension: results and causalities. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC’10. 2010.

    Google Scholar 

  43. Higuchi T. Approach to an irregular time series on the basis of the fractal theory. Physica D. 1988;31(2):277–83.

    Article  Google Scholar 

  44. Lebiecka K, Zuchowicz U, Wozniak-Kwasniewska A, Szekely D, Olejarczyk E, David O. Complexity analysis of eeg data in persons with depression subjected to transcranial magnetic stimulation. Front Physiol. 2018;9:1385.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Montgomery GH, Duhamel KN, Redd WH. A meta-analysis of hypnotically induced analgesia: how effective is hypnosis? Int J Clin Exp Hypn. 2000;48(2):138–53.

    Article  CAS  PubMed  Google Scholar 

  46. Walsh R, Shapiro SL. The meeting of meditative disciplines and western psychology: a mutually enriching dialogue. Am Psychol. 2006;61(3):227–39.

    Article  PubMed  Google Scholar 

  47. Solhjoo S, Nasrabadi AM, Golpayegani MRH. EEG-based mental task classification in hypnotized and normal subjects. In: Annual International Conference of the IEEE Engineering in Medicine and Biology – Proceedings. 2005.

    Google Scholar 

  48. Yargholi E, Nasrabadi AM. Chaotic features analysis of EEG signals during hallucination tasks of Waterloo-Stanford standard. J Biomed Sci Eng. 2010;3(12):1175–81.

    Article  Google Scholar 

  49. Baer RA. Mindfulness-based treatment approaches: clinician’s guide to evidence base and applications, Practical Resources for the Mental Health Professional. Oxford: Academic Press; 2006.

    Google Scholar 

  50. Aftanas LI, Golocheikine SA. Non-linear dynamic complexity of the human EEG during meditation. Neurosci Lett. 2002;330(2):143–6.

    Article  CAS  PubMed  Google Scholar 

  51. Vyšata O, Schätz M, Kopal J, Burian J, Procházka A, Jiří K, et al. Non-linear EEG measures in meditation. J Biomed Sci Eng. 2014;7(9):731–8.

    Article  Google Scholar 

  52. Takahashi T, Cho RY, Murata T, Mizuno T, Kikuchi M, Mizukami K, et al. Age-related variation in EEG complexity to photic stimulation: a multiscale entropy analysis. Clin Neurophysiol. 2009;120(3):476–83.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Iglesias-Parro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iglesias-Parro, S., Soriano, M.F., Ibáñez-Molina, A.J. (2024). Advances in Understanding Fractals in Affective and Anxiety Disorders. In: Di Ieva, A. (eds) The Fractal Geometry of the Brain. Advances in Neurobiology, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-031-47606-8_36

Download citation

Publish with us

Policies and ethics