Skip to main content

Fabrication of Ferritin Nanoparticle Patterns for Controlling Neuron Adhesion and Neurite Outgrowth

  • Conference paper
  • First Online:
9th International Conference on the Development of Biomedical Engineering in Vietnam (BME 2022)

Abstract

The interaction between neurons and nanostructured substrates is a topic of increasing interest due to the possibility of manipulating individual cells on substrates on length scales of protein size. Moreover, patterns of biochemical ligand cues are known to play a crucial role in neuronal network guidance. A comprehensive study of cell adhesion to biomaterials opens promising strategies for controlling cell viability, cell faith, neuronal network formation, and other applications. In this research, we combine a top-down lithography approach with bottom-up protein self-assembly to fabricate positively charged ferritin nanoparticles (FerNPs) patterns on silicon substrates, which can be used to control neuron adhesion and guided neurite outgrowth. The positively charged surface of FerNPs acts as cell adhesion sites, while the background is passivated by the trichloro(1H,1H,2H,2H-perflueooctyl) silane molecules as a cell repellent backfill. We have found a high guidance efficiency of 88% for neurons on the patterns. This finding opens potential applications for advanced controlling of cell adhesion and neurite guidance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thelen, K., et al.: Depending on its nano-spacing, ALCAM promotes cell attachment and axon growth. Plos One 7(12) (2012). ARTN e4049310.1371/journal.pone.0040493

    Google Scholar 

  2. Chen, C.S., et al.: Geometric control of cell life and death. Science 276(5317), 1425–1428 (1997). https://doi.org/10.1126/science.276.5317.1425

    Article  Google Scholar 

  3. Hirschfeld-Warneken, V.C., et al.: Cell adhesion and polarisation on molecularly defined spacing gradient surfaces of cyclic RGDfK peptide patches. Eur. J. Cell Biol. 87(8–9), 743–750 (2008). https://doi.org/10.1016/j.ejcb.2008.03.011

    Article  Google Scholar 

  4. Arnold, M., et al.: Induction of cell polarization and migration by a gradient of nanoscale variations in adhesive ligand spacing. Nano Lett. 8(7), 2063–2069 (2008). https://doi.org/10.1021/nl801483w

    Article  Google Scholar 

  5. Palecek, S.P., et al.: Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385(6616), 537–540 (1997). https://doi.org/10.1038/385537a0

    Article  Google Scholar 

  6. Kim, M.C., et al.: Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix. Integr. Biol. 4(11), 1386–1397 (2012). https://doi.org/10.1039/c2ib20159c

    Article  Google Scholar 

  7. Yoo, S., et al.: Electro-optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface. ACS Nano 10(4), 4274–4281 (2016). https://doi.org/10.1021/acsnano.5b07747

    Article  Google Scholar 

  8. Jung, S., et al.: Intracellular gold nanoparticles increase neuronal excitability and aggravate seizure activity in the mouse brain. Plos One 9(3) (2014). ARTN e9136010.1371/journal.pone.0091360

    Google Scholar 

  9. Goldner, J.S., et al.: Neurite bridging across micropatterned grooves. Biomaterials 27(3), 460–472 (2006). https://doi.org/10.1016/j.biomaterials.2005.06.035

    Article  Google Scholar 

  10. Sanchez-Fefix, O., et al.: Synthesis of functionalized monodisperse magnetic nanoparticles for bioapplications. Abstracts of Papers of the American Chemical Society, vol. 246 (2013)

    Google Scholar 

  11. Doria, G., et al.: Noble metal nanoparticles for biosensing applications. Sensors 12(2), 1657–1687 (2012). https://doi.org/10.3390/s120201657

    Article  Google Scholar 

  12. Thanh, N.T.K., et al.: Peptides as capping ligands for in situ synthesis of water soluble Co nanoparticles for bioapplications. Fifth Int. Conf. Fine Particle Magn. 17, 70–76 (2005). https://doi.org/10.1088/1742-6596/17/1/012

    Article  Google Scholar 

  13. Novotna, Z., et al.: Cells adhesion and growth on gold nanoparticle grafted glass. Appl. Surf. Sci. 307, 217–223 (2014). https://doi.org/10.1016/j.apsusc.2014.04.017

    Article  Google Scholar 

  14. Valdiglesias, V., et al.: Neuronal cytotoxicity and genotoxicity induced by zinc oxide nanoparticles. Environ. Int. 55, 92–100 (2013). https://doi.org/10.1016/j.envint.2013.02.013

    Article  Google Scholar 

  15. Huang, J.H., et al.: Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett. 9(3), 1111–1116 (2009). https://doi.org/10.1021/nl803548b

    Article  Google Scholar 

  16. Li, P.: Control of neuronal adhesion and neurites outgrowth by biofunctionalized gold nanoparticles. RWTH Aachen. p. 124 (2016)

    Google Scholar 

  17. Gilles, S., et al.: Control of cell adhesion and neurite outgrowth by patterned gold nanoparticles with tunable attractive or repulsive surface properties. Small 8(21), 3357–3367 (2012). https://doi.org/10.1002/smll.201200465

  18. Gilles, S., et al., Patterned self-assembly of gold nanoparticles on chemical templates fabricated by soft UV nanoimprint lithography. Nanotechnology 22(29) (2011). Artn 29530110.1088/0957–4484/22/29/295301

    Google Scholar 

  19. Kunzle, M., Eckert, T., Beck, T.: Binary protein crystals for the assembly of inorganic nanoparticle superlattices. J. Am. Chem. Soc. 138(39), 12731–12734 (2016). https://doi.org/10.1021/jacs.6b07260

    Article  Google Scholar 

  20. Schwaab, D., et al.: Generation of protein nanogradients by microcontact printing. Japan. J. Appl. Phys. 52(5) (2013). Unsp 05da19Doi https://doi.org/10.7567/Jjap.52.05da19

  21. Sollier, E., et al.: Rapid prototyping polymers for microfluidic devices and high pressure injections. Lab Chip 11, 3752–3765 (2011). https://doi.org/10.1039/c1lc20514e

    Article  Google Scholar 

  22. Tran, A.Q., et al.: Surface coupling strength of gold nanoparticles affects cytotoxicity towards neurons. Biomater. Sci. 5(5), 1051–1060 (2017). https://doi.org/10.1039/c7bm00054e

    Article  Google Scholar 

  23. Cheng, N., Park, K.-W., Andrew, T.L.: Solvent-free reactive vapor deposition for functional fabrics: separating oil–water mixtures with fabrics. Fibers 7 (2019). https://doi.org/10.3390/fib7010002

  24. Auwerter, L.C.C., et al.: Development of porous glass surfaces with recoverable hydrophobicity. Mater. Let. X 1, 100002 (2019). https://doi.org/10.1016/j.mlblux.2019.100002

    Article  Google Scholar 

  25. Lee, M.V., et al.: Gas Phase Deposition of Trichloro(1H,1H,2H,2H-perfluorooctyl)silane on Silicon Dioxide, by XPS. Surf. Sci. Spectra 17(1), 87–92 (2010). https://doi.org/10.1116/11.20071103

    Article  Google Scholar 

  26. Yesildag, C., Bartsch, C., Lensen, M.C.: Micropatterning of Au NPs on PEG hydrogels using different silanes to control cell adhesion on the nanocomposites. ACS Omega 3(7), 7214–7223 (2018). https://doi.org/10.1021/acsomega.8b00863

    Article  Google Scholar 

  27. Kim, D.J., et al.: A self-assembled monolayer-based micropatterned array for controlling cell adhesion and protein adsorption. Biotechnol. Bioeng. 108(5), 1194–1202 (2011). https://doi.org/10.1002/bit.23029

    Article  Google Scholar 

  28. Brewer, G.J., et al.: Optimized survival of hippocampal-neurons in B27-supplemented Neurobasal(Tm), a new serum-free medium combination. J. Neurosci. Res. 35(5), 567–576 (1993). https://doi.org/10.1002/jnr.490350513

  29. Fricke, R., et al.: Axon guidance of rat cortical neurons by microcontact printed gradients. Biomaterials 32(8), 2070–2076 (2011). https://doi.org/10.1016/j.biomaterials.2010.11.036

  30. Li, P.G., et al.: Tuning neuron adhesion and neurite guiding using functionalized AuNPs and backfill chemistry. RSC Adv. 5(49), 39252–39262 (2015). https://doi.org/10.1039/C5ra06901g

  31. Greben, K., et al.: Immobilization and surface functionalization of gold nanoparticles monitored via streaming current/potential measurements. J. Phys. Chem. B 119(19), 5988–5994 (2015). https://doi.org/10.1021/acs.jpcb.5b02615

    Article  Google Scholar 

  32. Sun, X., et al.: Bioengineered ferritin nanocarriers for cancer therapy. Int. J. Mol. Sci. 22(13) (2021). https://doi.org/10.3390/ijms22137023

  33. Xu, C., Qu, X.: Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Mater. 6(3), e90–e90 (2014). https://doi.org/10.1038/am.2013.88

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the Institute of Biological Information Processing, Juelich Forschungszentrum, Germany, for supporting us in performing this research. We especially thank those people in the Institute, Bettina Brewer and Rita Fricke, for helping us to prepare the neurons, and DI Michael Proempers for providing us the silicon mold.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anh Quang Tran .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, A.Q. et al. (2024). Fabrication of Ferritin Nanoparticle Patterns for Controlling Neuron Adhesion and Neurite Outgrowth. In: Vo, V.T., Nguyen, TH., Vong, B.L., Le, N.B., Nguyen, T.Q. (eds) 9th International Conference on the Development of Biomedical Engineering in Vietnam. BME 2022. IFMBE Proceedings, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-031-44630-6_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44630-6_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44629-0

  • Online ISBN: 978-3-031-44630-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics