Skip to main content

MS-MT: Multi-scale Mean Teacher with Contrastive Unpaired Translation for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14092))

Included in the following conference series:

  • 53 Accesses

Abstract

Domain shift has been a long-standing issue for medical image segmentation. Recently, unsupervised domain adaptation (UDA) methods have achieved promising cross-modality segmentation performance by distilling knowledge from a label-rich source domain to a target domain without labels. In this work, we propose a multi-scale self-ensembling based UDA framework for automatic segmentation of two key brain structures i.e., Vestibular Schwannoma (VS) and Cochlea on high-resolution T2 images. First, a segmentation-enhanced contrastive unpaired image translation module is designed for image-level domain adaptation from source T1 to target T2. Next, multi-scale deep supervision and consistency regularization are introduced to a mean teacher network for self-ensemble learning to further close the domain gap. Furthermore, self-training and intensity augmentation techniques are utilized to mitigate label scarcity and boost cross-modality segmentation performance. Our method demonstrates promising segmentation performance with a mean Dice score of \(83.8\%\) and \(81.4\%\) and an average asymmetric surface distance (ASSD) of 0.55 mm and 0.26 mm for the VS and Cochlea, respectively in the validation phase of the crossMoDA 2022 challenge.

This work was done when Huai Zhe was an intern at I2R, A*STAR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bai, W., et al.: Semi-supervised learning for network-based cardiac mr image segmentation. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 253–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_29

  2. Chen, C., Dou, Q., Chen, H., Qin, J., Heng, P.A.: Unsupervised bidirectional cross-modality adaptation via deeply synergistic image and feature alignment for medical image segmentation. IEEE Trans. Med. Imaging 39(7), 2494–2505 (2020)

    Article  Google Scholar 

  3. Choi, J.W.: Using out-of-the-box frameworks for contrastive unpaired image translation for vestibular schwannoma and cochlea segmentation: an approach for the CrossMoDA challenge. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part II, pp. 509–517. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_44

    Chapter  Google Scholar 

  4. Clark, K., et al.: The cancer imaging archive (tcia): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  5. Dorent, R., et al.: Scribble-based domain adaptation via co-segmentation. In: Martel, A.L., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2020: 23rd International Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part I, pp. 479–489. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_47

    Chapter  Google Scholar 

  6. Dorent, R., et al.: Crossmoda 2021 challenge: benchmark of cross-modality domain adaptation techniques for vestibular schwannoma and cochlea segmentation. Medical Image Analysis p. 102628 (2022). https://doi.org/10.1016/j.media.2022.102628

  7. Dou, Q., et al.: Pnp-adanet: plug-and-play adversarial domain adaptation network at unpaired cross-modality cardiac segmentation. IEEE Access 7, 99065–99076 (2019)

    Article  Google Scholar 

  8. Dou, Q., et al.: 3D deeply supervised network for automated segmentation of volumetric medical images. Med. Image Anal. 41, 40–54 (2017)

    Article  Google Scholar 

  9. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  10. Hesamian, M.H., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32(4), 582–596 (2019)

    Article  Google Scholar 

  11. Hoffman, J., et al.: Cycada: cycle-consistent adversarial domain adaptation. In: International Conference on Machine Learning, pp. 1989–1998. PMLR (2018)

    Google Scholar 

  12. Huo, Y., Xu, Z., Bao, S., Assad, A., Abramson, R.G., Landman, B.A.: Adversarial synthesis learning enables segmentation without target modality ground truth. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1217–1220. IEEE (2018)

    Google Scholar 

  13. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnu-net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  14. Jaiswal, A., Babu, A.R., Zadeh, M.Z., Banerjee, D., Makedon, F.: A survey on contrastive self-supervised learning. Technologies 9(1), 2 (2021)

    Article  Google Scholar 

  15. Li, S., Zhao, Z., Xu, K., Zeng, Z., Guan, C.: Hierarchical consistency regularized mean teacher for semi-supervised 3d left atrium segmentation. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 3395–3398. IEEE (2021)

    Google Scholar 

  16. Lin, E., Crane, B.: The management and imaging of vestibular schwannomas. Am. J. Neuroradiol. 38(11), 2034–2043 (2017)

    Article  Google Scholar 

  17. Liu, H., Fan, Y., Cui, C., Su, D., McNeil, A., Dawant, B.M.: Unsupervised domain adaptation for vestibular schwannoma and cochlea segmentation via semi-supervised learning and label fusion. In: Crimi, A., Bakas, S. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 7th International Workshop, BrainLes 2021, Held in Conjunction with MICCAI 2021, Virtual Event, September 27, 2021, Revised Selected Papers, Part II, pp. 529–539. Springer International Publishing, Cham (2022). https://doi.org/10.1007/978-3-031-09002-8_46

    Chapter  Google Scholar 

  18. Long, M., Cao, Y., Wang, J., Jordan, M.: Learning transferable features with deep adaptation networks. In: International Conference on Machine Learning, pp. 97–105. PMLR (2015)

    Google Scholar 

  19. Lu, F., Wu, F., Hu, P., Peng, Z., Kong, D.: Automatic 3D liver location and segmentation via convolutional neural network and graph cut. Int. J. Comput. Assist. Radiol. Surg. 12(2), 171–182 (2017)

    Article  Google Scholar 

  20. Nguyen, D., de Kanztow, L.: Vestibular schwannomas: a review. Appl Radiol 48(3), 22–27 (2019)

    Google Scholar 

  21. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) Computer Vision – ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX, pp. 319–345. Springer International Publishing, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  22. Shapey, J., et al.: Segmentation of vestibular schwannoma from magnetic resonance imaging: an open annotated dataset and baseline algorithm. The Cancer Imaging Archive (2021)

    Google Scholar 

  23. Shapey, J., et al.: Segmentation of vestibular schwannoma from MRI, an open annotated dataset and baseline algorithm. Sci. Data 8(1), 1–6 (2021)

    Article  Google Scholar 

  24. Shapey, J., et al.: An artificial intelligence framework for automatic segmentation and volumetry of vestibular schwannomas from contrast-enhanced t1-weighted and high-resolution t2-weighted mri. J. Neurosurg. 134(1), 171–179 (2019)

    Article  Google Scholar 

  25. Shin, H., Kim, H., Kim, S., Jun, Y., Eo, T., Hwang, D.: Cosmos: cross-modality unsupervised domain adaptation for 3D medical image segmentation based on target-aware domain translation and iterative self-training. arXiv preprint arXiv:2203.16557 (2022)

  26. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, pp. 240–248. Springer International Publishing, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  27. Tajbakhsh, N., Jeyaseelan, L., Li, Q., Chiang, J.N., Wu, Z., Ding, X.: Embracing imperfect datasets: a review of deep learning solutions for medical image segmentation. Med. Image Anal. 63, 101693 (2020)

    Article  Google Scholar 

  28. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: Advances in Neural Information Processing Systems 30 (2017)

    Google Scholar 

  29. Tzeng, E., Hoffman, J., Zhang, N., Saenko, K., Darrell, T.: Deep domain confusion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474 (2014)

  30. Wang, L., Wang, M., Zhang, D., Fu, H.: Unsupervised domain adaptation via style-aware self-intermediate domain. arXiv preprint arXiv:2209.01870 (2022)

  31. Zhang, Y., Miao, S., Mansi, T., Liao, R.: Task driven generative modeling for unsupervised domain adaptation: application to X-ray image segmentation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2018: 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II, pp. 599–607. Springer International Publishing, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_67

    Chapter  Google Scholar 

  32. Zhao, Z., et al.: Mmgl: multi-scale multi-view global-local contrastive learning for semi-supervised cardiac image segmentation. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 401–405 (2022)

    Google Scholar 

  33. Zhao, Z., Xu, K., Li, S., Zeng, Z., Guan, C.: MT-UDA: towards unsupervised cross-modality medical image segmentation with limited source labels. In: de Bruijne, et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I, pp. 293–303. Springer International Publishing, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_28

    Chapter  Google Scholar 

  34. Zhao, Z., Zhou, F., Xu, K., Zeng, Z., Guan, C., Kevin Zhou, S.: Le-uda: label-efficient unsupervised domain adaptation for medical image segmentation. IEEE Transactions on Medical Imaging (2022)

    Google Scholar 

  35. Zhao, Z., Zhou, F., Zeng, Z., Guan, C., Zhou, S.K.: Meta-hallucinator: towards few-shot cross-modality cardiac image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022: 25th International Conference, Singapore, September 18–22, 2022, Proceedings, Part V, pp. 128–139. Springer Nature Switzerland, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_13

    Chapter  Google Scholar 

  36. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  37. Zou, Y., Yu, Z., Kumar, B., Wang, J.: Unsupervised domain adaptation for semantic segmentation via class-balanced self-training. In: Proceedings of the European Conference On Computer Vision (ECCV), pp. 289–305 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai Zhe Yeo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Z., Xu, K., Yeo, H.Z., Yang, X., Guan, C. (2023). MS-MT: Multi-scale Mean Teacher with Contrastive Unpaired Translation for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 14092. Springer, Cham. https://doi.org/10.1007/978-3-031-44153-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-44153-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-44152-3

  • Online ISBN: 978-3-031-44153-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics