Skip to main content

MoCoSR: Respiratory Motion Correction and Super-Resolution for 3D Abdominal MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

Abdominal MRI is critical for diagnosing a wide variety of diseases. However, due to respiratory motion and other organ motions, it is challenging to obtain motion-free and isotropic MRI for clinical diagnosis. Imaging patients with inflammatory bowel disease (IBD) can be especially problematic, owing to involuntary bowel movements and difficulties with long breath-holds during acquisition. Therefore, this paper proposes a deep adversarial super-resolution (SR) reconstruction approach to address the problem of multi-task degradation by utilizing cycle consistency in a staged reconstruction model. We leverage a low-resolution (LR) latent space for motion correction, followed by super-resolution reconstruction, compensating for imaging artefacts caused by respiratory motion and spontaneous bowel movements. This alleviates the need for semantic knowledge about the intestines and paired data. Both are examined through variations of our proposed approach and we compare them to conventional, model-based, and learning-based MC and SR methods. Learned image reconstruction approaches are believed to occasionally hide disease signs. We investigate this hypothesis by evaluating a downstream task, automatically scoring IBD in the area of the terminal ileum on the reconstructed images and show evidence that our method does not suffer a synthetic domain bias.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gastrointestinal Unit Medical Services MGH, Andres, P.G., Friedman, L.S., et al.: Epidemiology and the natural course of inflammatory bowel disease. Gastroenterol. Clin. North Am. 28(2), 255–281 (1999)

    Google Scholar 

  2. Sandler, R., Eisen, G.: Epidemiology of inflammatory bowel disease. In: Kirsner (ed.) Inflammatory Bowel Disease, p. 96 5th ed. WB Saunders, Philadelphia (2000)

    Google Scholar 

  3. Rosen, M.J., Dhawan, A., Saeed, S.A.: Inflammatory bowel disease in children and adolescents. JAMA Pediatrics. 169(11), 1053–60 (2015)

    Article  Google Scholar 

  4. Tielbeek, J.A., et al.: Grading Crohn disease activity with MRI: interobserver variability of MRI features, MRI scoring of severity, and correlation with Crohn disease endoscopic index of severity. AJR 201(6), 1220–8 (2013)

    Article  Google Scholar 

  5. Ebner, M., et al.: Point-spread-function-aware slice-to-volume registration: application to upper abdominal MRI super-resolution. In: Zuluaga, M.A., Bhatia, K., Kainz, B., Moghari, M.H., Pace, D.F. (eds.) RAMBO/HVSMR -2016. LNCS, vol. 10129, pp. 3–13. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52280-7_1

    Chapter  Google Scholar 

  6. Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem with many partial solutions. Magn. Reson. Imaging. 42(4), 887–901 (2015)

    Article  Google Scholar 

  7. Afaq, A., et al.: Pitfalls on PET/MRI. In: Seminars in Nuclear Medicine, vol. 51, pp. 529–39. Elsevier (2021)

    Google Scholar 

  8. Alansary, A., et al.: PVR: patch-to-volume reconstruction for large area motion correction of fetal MRI. IEEE Trans. Med. Imaging. 36(10), 2031–44 (2017)

    Article  Google Scholar 

  9. Wang, Z., Chen, J., Hoi, S.C.H.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43(10), 3365–87 (2021)

    Article  Google Scholar 

  10. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee K.: Enhanced deep residual networks for single image super-resolution. In: CVPR, pp. 136–44 (2017)

    Google Scholar 

  11. Feng, C.-M., Yan, Y., Fu, H., Chen, L., Xu, Y.: Task transformer network for joint MRI reconstruction and super-resolution. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part VI. LNCS, vol. 12906, pp. 307–317. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_30

    Chapter  Google Scholar 

  12. Feng, C.-M., Fu, H., Yuan, S., Xu, Y.: Multi-contrast MRI super-resolution via a multi-stage integration network. In: de Bruijne, M., et al. (eds.) MICCAI 2021, Part VI. LNCS, vol. 12906, pp. 140–149. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_14

    Chapter  Google Scholar 

  13. Chen, Y., Shi, F., Christodoulou, A.G., Xie, Y., Zhou, Z., Li, D.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018, Part I. LNCS, vol. 11070, pp. 91–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_11

    Chapter  Google Scholar 

  14. Sánchez, I., Vilaplana, V.: Brain MRI super-resolution using 3D generative adversarial networks. arXiv preprint arXiv:1812.11440 (2018)

  15. Georgescu, M.I., et al.: Multimodal multi-head convolutional attention with various kernel sizes for medical image super-resolution. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2195–205 (2023)

    Google Scholar 

  16. Zhao, M., Wei, Y., Wong, K.K.: A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images. Magn. Reson. Imaging. 85, 153–60 (2022)

    Article  Google Scholar 

  17. Do, H., Bourdon, P., Helbert, D., Naudin, M., Guillevin, R.: 7T MRI super-resolution with Generative Adversarial Network. Electronic Imaging. 2021(18), 106–1 (2021)

    Google Scholar 

  18. Liu, J., Li, H., Huang, T., Ahn, E., Razi, A., Xiang, W.: Unsupervised representation learning for 3D MRI super resolution with degradation adaptation. arXiv preprint arXiv:2205.06891 (2022)

  19. Wang, S., et al.: Joint motion correction and super resolution for cardiac segmentation via latent optimisation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 14–24. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_2

    Chapter  Google Scholar 

  20. Luo, Z., Huang, H., Yu, L., Li, Y., Fan, H., Liu, S.: Deep constrained least squares for blind image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17642–17652 (2022)

    Google Scholar 

  21. Mahapatra, D., Schüffler, P.J., Tielbeek, J.A., Makanyanga, J.C., Stoker, J., Taylor, S.A., et al.: Automatic detection and segmentation of Crohn’s disease tissues from abdominal MRI. IEEE Trans. Med. Imaging. 32(12), 2332–47 (2013)

    Article  Google Scholar 

  22. Holland, R., Patel, U., Lung, P., Chotzoglou, E., Kainz, B.: Automatic detection of bowel disease with residual networks. In: Rekik, I., Adeli, E., Park, S.H. (eds.) PRIME 2019. LNCS, vol. 11843, pp. 151–159. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32281-6_16

    Chapter  Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  24. Taylor, S.A., et al.: Diagnostic accuracy of magnetic resonance enterography and small bowel ultrasound for the extent and activity of newly diagnosed and relapsed Crohn’s disease (METRIC): a multicentre trial. Lancet Gastroenterol Hepatol. 3(8), 548–58 (2018)

    Article  Google Scholar 

  25. Romano, Y., Isidoro, J., Milanfar, P.: RAISR: rapid and accurate image super resolution. IEEE Trans. Comput. Imaging. 3(1), 110–25 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the JADS programme at the UKRI Centre for Doctoral Training in Artificial Intelligence for Healthcare (EP/S023283/1) and HPC resources provided by the Erlangen National High Performance Computing Center (NHR@FAU) of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) under the NHR project b143dc. NHR funding is provided by federal and Bavarian state authorities. NHR@FAU hardware is partially funded by the German Research Foundation (DFG) - 440719683. Support was also received by the ERC - project MIA-NORMAL 101083647 and DFG KA 5801/2-1, INST 90/1351-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weitong Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 19091 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, W. et al. (2023). MoCoSR: Respiratory Motion Correction and Super-Resolution for 3D Abdominal MRI. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14229. Springer, Cham. https://doi.org/10.1007/978-3-031-43999-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43999-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43998-8

  • Online ISBN: 978-3-031-43999-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics