Skip to main content

Domain-Agnostic Segmentation of Thalamic Nuclei from Joint Structural and Diffusion MRI

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 (MICCAI 2023)

Abstract

The human thalamus is a subcortical brain structure that comprises dozens of nuclei with different function and connectivity, which are affected differently by disease. For this reason, there is growing interest in studying the thalamic nuclei in vivo with MRI. Tools are available to segment the thalamus from 1 mm T1 scans, but the image contrast is too faint to produce reliable segmentations. Some tools have attempted to refine these boundaries using diffusion MRI information, but do not generalise well across diffusion MRI acquisitions. Here we present the first CNN that can segment thalamic nuclei from T1 and diffusion data of any resolution without retraining or fine tuning. Our method builds on our histological atlas of the thalamic nuclei and silver standard segmentations on high-quality diffusion data obtained with our recent Bayesian adaptive segmentation tool. We combine these with an approximate degradation model for fast domain randomisation during training. Our CNN produces a segmentation at 0.7 mm isotropic resolution, irrespective of the resolution of the input. Moreover, it uses a parsimonious model of the diffusion signal (fractional anisotropy and principal eigenvector) that is compatible with virtually any set of directions and b-values, including huge amounts of legacy data. We show results of our proposed method on three heterogeneous datasets acquired on dozens of different scanners. The method is publicly available at freesurfer.net/fswiki/ThalamicNucleiDTI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexander, D., Pierpaoli, C., Basser, P., Gee, J.: Spatial transformations of diffusion tensor magnetic resonance images. IEEE Trans. Med. Imaging 20(11), 1131–1139 (2001)

    Article  Google Scholar 

  2. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Log-Euclidean metrics for fast and simple calculus on diffusion tensors. Magn. Reson. Med. 56(2), 411–421 (2006)

    Article  Google Scholar 

  3. Ashburner, J., Friston, K.: Unified segmentation. Neuroimage 26(3), 839–51 (2005)

    Article  Google Scholar 

  4. Basile, G., Bertino, S., Bramanti, A., Ciurleo, R., et al.: In vivo super-resolution track-density imaging for thalamic nuclei identification. Cereb Cortex 31, 5613–36 (2021)

    Article  Google Scholar 

  5. Battistella, G., Najdenovska, E., Maeder, P., Ghazaleh, N., et al.: Robust thalamic nuclei segmentation method based on local diffusion magnetic resonance properties. Brain Struct. Funct. 222(5), 2203–16 (2017)

    Article  Google Scholar 

  6. Behrens, T.E., Johansen-Berg, H., Woolrich, M., Smith, S., et al.: Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat. Neurosci. 6(7), 750–57 (2003)

    Article  Google Scholar 

  7. Billot, B., Greve, D.N., Puonti, O., Thielscher, A., et al.: SynthSeg: segmentation of brain MRI scans of any contrast and resolution without retraining. Med Image Anal. 86, 102789 (2023)

    Google Scholar 

  8. Billot, B., Robinson, E., Dalca, A.V., Iglesias, J.E.: Partial volume segmentation of brain MRI scans of any resolution and contrast. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12267, pp. 177–187. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59728-3_18

    Chapter  Google Scholar 

  9. Braak, H., Braak, E.: Alzheimer’s disease affects limbic nuclei of the thalamus. Acta Neuropathol. 81(3), 261–268 (1991)

    Article  Google Scholar 

  10. Braak, H., Braak, E.: Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82(4), 239–259 (1991)

    Article  Google Scholar 

  11. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  12. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units. arXiv preprint arXiv:1511.07289 (2015)

  13. Ewert, C., Kügler, D., Yendiki, A., Reuter, M.: Learning anatomical segmentations for tractography from diffusion MRI. In: Computing dMRI Workshop 2020, pp. 81–93

    Google Scholar 

  14. Fama, R., Sullivan, E.V.: Thalamic structures and associated cognitive functions: relations with age and aging. Neurosci. Biobehav. R 54, 29–37 (2015)

    Article  Google Scholar 

  15. Fischl, B., Salat, D.H., Busa, E., Albert, M., et al.: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3), 341–355 (2002)

    Article  Google Scholar 

  16. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenic 7(2), 179–88 (1936)

    Article  Google Scholar 

  17. Henderson, J.M., Carpenter, K., Cartwright, H., Halliday, G.M.: Loss of thalamic intralaminar nuclei in progressive supranuclear palsy and Parkinson’s disease: clinical and therapeutic implications. Brain 123(7), 1410–21 (2000)

    Article  Google Scholar 

  18. Iglesias, J.E., Insausti, R., Lerma-Usabiaga, G., Bocchetta, M., et al.: A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 183, 314–26 (2018)

    Article  Google Scholar 

  19. Jack, C.R., Jr., Bernstein, M.A., Fox, N.C., Thompson, P., et al.: The Alzheimer’s disease neuroimaging initiative: MRI methods. J. Magn. Reson. Imaging 27, 685–91 (2008)

    Article  Google Scholar 

  20. Jakab, A., Blanc, R., Berényi, E.L., Székely, G.: Generation of individualized thalamus target maps by using statistical shape models and thalamocortical tractography. Am. J. Neuroradiol. 33(11), 2110 (2012)

    Article  Google Scholar 

  21. Johansen-Berg, H., Behrens, T., Sillery, E., Ciccarelli, O., et al.: Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb. Cortex 15(1), 31–39 (2005)

    Article  Google Scholar 

  22. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  23. Krauth, A., Blanc, R., Poveda, A., Jeanmonod, D., et al.: A mean three-dimensional atlas of the human thalamus: generation from multiple histological data. Neuroimage 49(3), 2053–62 (2010)

    Article  Google Scholar 

  24. Liu, Y., D’Haese, P.F., Newton, A.T., Dawant, B.M.: Generation of human thalamus atlases from 7 T data and application to intrathalamic nuclei segmentation in clinical 3 T T1-weighted images. Magn. Reson. Med. 65, 114–128 (2020)

    Google Scholar 

  25. Mang, S., Busza, A., Reiterer, S., Grodd, W.: Klose: Thalamus segmentation based on the local diffusion direction: a group study. Magn. Reson. Med. 67, 118–26 (2012)

    Article  Google Scholar 

  26. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: fully convolutional neural networks for volumetric medical image segmentation. In: 3DV Conference 2016, pp. 565–571 (2016)

    Google Scholar 

  27. Patenaude, B., Smith, S., Kennedy, D., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage 56, 907–22 (2011)

    Article  Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Sadikot, A.F., Chakravarty, M., Bertrand, G., Rymar, V.V., et al.: Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus. Front. Syst. Neurosci. 5, 71 (2011)

    Article  Google Scholar 

  30. Schmahmann, J.: Vascular syndromes of the thalamus. Stroke 34, 2264–2278 (2003)

    Article  Google Scholar 

  31. Semedo, C., et al.: Thalamic nuclei segmentation using tractography, population-specific priors and local fibre orientation. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11072, pp. 383–391. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00931-1_44

    Chapter  Google Scholar 

  32. Sherman, S.M., Guillery, R.W.: Exploring the Thalamus. Elsevier, Amsterdam (2001)

    Google Scholar 

  33. Sotiropoulos, S.N., Jbabdi, S., Xu, J., Andersson, J.L., et al.: Advances in diffusion MRI acquisition and processing in the human connectome project. Neuroimage 80, 125–143 (2013)

    Article  Google Scholar 

  34. Stough, J.V., Glaister, J., Ye, C., Ying, S.H., Prince, J.L., Carass, A.: Automatic method for thalamus parcellation using multi-modal feature classification. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8675, pp. 169–176. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10443-0_22

    Chapter  Google Scholar 

  35. Su, J.H., Thomas, F.T., Kasoff, W.S., Tourdias, T., et al.: Thalamus optimized multi atlas segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI. Neuroimage 194, 272–82 (2019)

    Article  Google Scholar 

  36. Tourdias, T., Saranathan, M., Levesque, I.R., Su, J., Rutt, B.K.: Visualization of intra-thalamic nuclei with optimized white-matter-nulled MPRAGE at 7T. Neuroimage 84, 534–545 (2014)

    Article  Google Scholar 

  37. Tregidgo, H.F.J., Soskic, S., Althonayan, J., Maffei, C., et al.: Accurate Bayesian segmentation of thalamic nuclei using diffusion MRI and an improved histological atlas. Neuroimage 274, 120129 (2023)

    Article  Google Scholar 

  38. Umapathy, L., Keerthivasan, M.B., Zahr, N.M., Bilgin, A., Saranathan, M.: Convolutional neural network based frameworks for fast automatic segmentation of thalamic nuclei from native and synthesized contrast structural MRI. Neuroinformatics 1–14 (2021)

    Google Scholar 

  39. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imaging 22(1), 105–119 (2003)

    Article  MATH  Google Scholar 

  40. Vatsavayai, S.C., Yoon, S.J., Gardner, R.C., Gendron, T.F., et al.: Timing and significance of pathological features in C9orf72 expansion-associated frontotemporal dementia. Brain 139(12), 3202–16 (2016)

    Article  Google Scholar 

  41. Wachinger, C., Reuter, M., Klein, T.: DeepNAT: deep convolutional neural network for segmenting neuroanatomy. Neuroimage 170, 434–445 (2018)

    Article  Google Scholar 

  42. Zhang, D., Snyder, A., Fox, M., Sansbury, M., et al.: Intrinsic functional relations between human cerebral cortex and thalamus. J. Neurophysiol. 100, 1740–48 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

Work primarily funded by ARUK (IRG2019A003). Additional support by the NIH (RF1MH123195, R01AG070988, P41EB015902, R01EB021265, R56MH121426, R01NS112161), EPSRC (EP/R006032/1), Wellcome Trust (221915/Z/20/Z), Alzheimer’s Society (AS-JF-19a-004-517), Brain Research UK, Wolfson; UK NIHR (BRC149/NS/MH), UK MRC (MR/M008525/1), Marie Curie (765148), ERC (677697), and Miriam Marks Brain Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry F. J. Tregidgo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tregidgo, H.F.J. et al. (2023). Domain-Agnostic Segmentation of Thalamic Nuclei from Joint Structural and Diffusion MRI. In: Greenspan, H., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. Lecture Notes in Computer Science, vol 14227. Springer, Cham. https://doi.org/10.1007/978-3-031-43993-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43993-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43992-6

  • Online ISBN: 978-3-031-43993-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics