Skip to main content

Hybrid ASP-Based Multi-objective Scheduling of Semiconductor Manufacturing Processes

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2023)

Abstract

Modern semiconductor manufacturing involves intricate production processes consisting of hundreds of operations, which can take several months from lot release to completion. The high-tech machines used in these processes are diverse, operate on individual wafers, lots, or batches in multiple stages, and necessitate product-specific setups and specialized maintenance procedures. This situation is different from traditional job-shop scheduling scenarios, which have less complex production processes and machines, and mainly focus on solving highly combinatorial but abstract scheduling problems. In this work, we address the scheduling of realistic semiconductor manufacturing processes by modeling their specific requirements using hybrid Answer Set Programming with difference logic, incorporating flexible machine processing, setup, batching and maintenance operations. Unlike existing methods that schedule semiconductor manufacturing processes locally with greedy heuristics or by independently optimizing specific machine group allocations, we examine the potentials of large-scale scheduling subject to multiple optimization objectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/prosysscience/FJSP-SMT2020.

References

  1. Abels, D., Jordi, J., Ostrowski, M., Schaub, T., Toletti, A., Wanko, P.: Train scheduling with hybrid ASP. Theory Pract. Logic Program. 21(3), 317–347 (2021). https://doi.org/10.1017/S1471068420000046

    Article  MathSciNet  MATH  Google Scholar 

  2. Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with answer set programming. Fund. Inform. 147(1), 1–25 (2016). https://doi.org/10.3233/FI-2016-1396

    Article  MathSciNet  MATH  Google Scholar 

  3. Ali, R., El-Kholany, M., Gebser, M.: Flexible job-shop scheduling for semiconductor manufacturing with hybrid answer set programming (application paper). In: Hanus, M., Inclezan, D. (eds.) PADL. LNCS, vol. 13880, pp. 85–95. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-24841-2_6

    Chapter  Google Scholar 

  4. Ali, R., El-Kholany, M., Gebser, M.: Hybrid ASP-based multi-objective scheduling of semiconductor manufacturing processes (extended version) (2023). https://doi.org/10.48550/arXiv.2307.14799

  5. Balduccini, M.: Industrial-size scheduling with ASP+CP. In: Delgrande, J.P., Faber, W. (eds.) LPNMR 2011. LNCS (LNAI), vol. 6645, pp. 284–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20895-9_33

    Chapter  Google Scholar 

  6. Banbara, M., et al.: teaspoon: Solving the curriculum-based course timetabling problems with answer set programming. Ann. Oper. Res. 275(1), 3–37 (2019). https://doi.org/10.1007/s10479-018-2757-7

    Article  MathSciNet  MATH  Google Scholar 

  7. Brucker, P., Schlie, R.: Job-shop scheduling with multi-purpose machines. Computing 45(4), 369–375 (1990). https://doi.org/10.1007/BF02238804

    Article  MathSciNet  MATH  Google Scholar 

  8. Ceylan, Z., Tozan, H., Bulkan, S.: A coordinated scheduling problem for the supply chain in a flexible job shop machine environment. Oper. Res. Int. Journal 21(2), 875–900 (2021). https://doi.org/10.1007/s12351-020-00615-0

    Article  Google Scholar 

  9. Cotton, S., Maler, O.: Fast and flexible difference constraint propagation for DPLL(T). In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 170–183. Springer, Heidelberg (2006). https://doi.org/10.1007/11814948_19

    Chapter  MATH  Google Scholar 

  10. Da Col, G., Teppan, E.C.: Industrial size job shop scheduling tackled by present day CP solvers. In: Schiex, T., de Givry, S. (eds.) CP 2019. LNCS, vol. 11802, pp. 144–160. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30048-7_9

    Chapter  MATH  Google Scholar 

  11. Dodaro, C., Galatà, G., Grioni, A., Maratea, M., Mochi, M., Porro, I.: An ASP-based solution to the chemotherapy treatment scheduling problem. Theory Pract. Logic Program. 21(6), 835–851 (2021). https://doi.org/10.1017/S1471068421000363

    Article  MathSciNet  Google Scholar 

  12. Eiter, T., Geibinger, T., Musliu, N., Oetsch, J., Skocovský, P., Stepanova, D.: Answer-set programming for lexicographical makespan optimisation in parallel machine scheduling. In: Proceedings of the Eighteenth International Conference on Principles of Knowledge Representation and Reasoning (KR 2021), pp. 280–290. AAAI Press (2021). https://doi.org/10.24963/kr.2021/27

  13. El-Kholany, M., Gebser, M., Schekotihin, K.: Problem decomposition and multi-shot ASP solving for job-shop scheduling. Theory Pract. Logic Program. 22(4), 623–639 (2022). https://doi.org/10.1017/S1471068422000217

    Article  MathSciNet  MATH  Google Scholar 

  14. Francescutto, G., Schekotihin, K., El-Kholany, M.M.S.: Solving a multi-resource partial-ordering flexible variant of the job-shop scheduling problem with hybrid ASP. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 313–328. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_21

    Chapter  Google Scholar 

  15. Garey, M., Johnson, D., Sethi, R.: The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1(2), 117–129 (1976). https://doi.org/10.1287/moor.1.2.117

    Article  MathSciNet  MATH  Google Scholar 

  16. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with clingo. Theory Pract. Logic Program. 19(1), 27–82 (2019). https://doi.org/10.1017/S1471068418000054

    Article  MathSciNet  MATH  Google Scholar 

  17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.: Theory solving made easy with clingo 5. In: Technical Communications of the Thirty-second International Conference on Logic Programming (ICLP 2016), pp. 2:1–2:15. Schloss Dagstuhl (2016). https://doi.org/10.4230/OASIcs.ICLP.2016.2

  18. Gran, S., Ismail, I., Ajol, T., Ibrahim, A.: Mixed integer programming model for flexible job-shop scheduling problem (FJSP) to minimize makespan and total machining time. In: Proceedings of the International Conference on Computer, Communications, and Control Technology (I4CT), pp. 413–417. IEEE (2015). https://doi.org/10.1109/I4CT.2015.7219609

  19. Ham, A., Park, M., Kim, K.: Energy-aware flexible job shop scheduling using mixed integer programming and constraint programming. Math. Probl. Eng. 2021(Article ID 8035806), 1–12 (2021). https://doi.org/10.1155/2021/8035806

  20. Hassanzadeh, A., Rasti-Barzoki, M., Khosroshahi, H.: Two new meta-heuristics for a bi-objective supply chain scheduling problem in flow-shop environment. Appl. Soft Comput. 49, 335–351 (2016). https://doi.org/10.1016/j.asoc.2016.08.019

    Article  Google Scholar 

  21. Janhunen, T., Kaminski, R., Ostrowski, M., Schellhorn, S., Wanko, P., Schaub, T.: Clingo goes linear constraints over reals and integers. Theory Pract. Logic Program. 17(5–6), 872–888 (2017). https://doi.org/10.1017/S1471068417000242

    Article  MathSciNet  MATH  Google Scholar 

  22. Kopp, D., Hassoun, M., Kalir, A., Mönch, L.: SMT2020-A semiconductor manufacturing testbed. IEEE Trans. Semicond. Manuf. 33(4), 522–531 (2020). https://doi.org/10.1109/TSM.2020.3001933

    Article  Google Scholar 

  23. Kovács, B., Tassel, P., Ali, R., El-Kholany, M., Gebser, M., Seidel, G.: A customizable simulator for artificial intelligence research to schedule semiconductor fabs. In: Proceedings of the Thirty-third Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2022), pp. 106–111. IEEE (2022). https://doi.org/10.1109/ASMC54647.2022.9792520

  24. Leslie, M.: Pandemic scrambles the semiconductor supply chain. Engineering 9, 10–12 (2022). https://doi.org/10.1016/j.eng.2021.12.006

    Article  Google Scholar 

  25. Li, X., Gao, L.: An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling problem. Int. J. Prod. Econ. 174, 93–110 (2016). https://doi.org/10.1016/j.ijpe.2016.01.016

    Article  Google Scholar 

  26. Lifschitz, V.: Answer Set Programming. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24658-7

    Book  MATH  Google Scholar 

  27. Mönch, L., Fowler, J., Dauzère-Pérès, S., Mason, S., Rose, O.: A survey of problems, solution techniques, and future challenges in scheduling semiconductor manufacturing operations. J. Sched. 14(6), 583–599 (2011). https://doi.org/10.1007/s10951-010-0222-9

    Article  MathSciNet  Google Scholar 

  28. Pfund, M., Balasubramanian, H., Fowler, J., Mason, S., Rose, O.: A multi-criteria approach for scheduling semiconductor wafer fabrication facilities. J. Sched. 11(1), 29–47 (2008). https://doi.org/10.1007/s10951-007-0049-1

    Article  MATH  Google Scholar 

  29. Pfund, M., Mason, S., Fowler, J.: Semiconductor manufacturing scheduling and dispatching. In: Herrmann, J.W. (ed.) Handbook of Production Scheduling. International Series in Operations Research and Management Science, vol. 89, pp. 213–241. Springer, Boston (2006). https://doi.org/10.1007/0-387-33117-4_9

    Chapter  MATH  Google Scholar 

  30. Ricca, F., et al.: Team-building with answer set programming in the Gioia-Tauro seaport. Theory Pract. Logic Program. 12(3), 361–381 (2012). https://doi.org/10.1017/S147106841100007X

    Article  MathSciNet  MATH  Google Scholar 

  31. Sahraeian, R., Rohaninejad, M., Fadavi, M.: A new model for integrated lot sizing and scheduling in flexible job shop problem. J. Ind. Syst. Eng. 10(3), 72–91 (2017). https://www.jise.ir/article_44919.html

  32. Taillard, E.: Benchmarks for basic scheduling problems. Eur. J. Oper. Res. 64(2), 278–285 (1993). https://doi.org/10.1016/0377-2217(93)90182-M

    Article  MathSciNet  MATH  Google Scholar 

  33. Tassel, P., Rbaia, M.: A multi-shot ASP encoding for the aircraft routing and maintenance planning problem. In: Faber, W., Friedrich, G., Gebser, M., Morak, M. (eds.) JELIA 2021. LNCS (LNAI), vol. 12678, pp. 442–457. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75775-5_30

    Chapter  Google Scholar 

  34. Upasani, A., Uzsoy, R., Sourirajan, K.: A problem reduction approach for scheduling semiconductor wafer fabrication facilities. IEEE Trans. Semicond. Manuf. 19(2), 216–225 (2006). https://doi.org/10.1109/TSM.2006.873510

    Article  Google Scholar 

  35. Wang, L., Zheng, D.: An effective hybrid optimization strategy for job-shop scheduling problems. Comput. Oper. Res. 28(6), 585–596 (2001). https://doi.org/10.1016/S0305-0548(99)00137-9

    Article  MathSciNet  MATH  Google Scholar 

  36. Waschneck, B., et al.: Deep reinforcement learning for semiconductor production scheduling. In: Proceedings of the Twenty-ninth Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC 2018), pp. 301–306. IEEE (2018). https://doi.org/10.1109/ASMC.2018.8373191

  37. Xing, L., Chen, Y., Wang, P., Zhao, Q., Xiong, J.: A knowledge-based ant colony optimization for flexible job shop scheduling problems. Appl. Soft Comput. 10(3), 888–896 (2010). https://doi.org/10.1016/j.asoc.2009.10.006

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by FFG project 894072 (SwarmIn) as well as KWF project 28472, cms electronics GmbH, FunderMax GmbH, Hirsch Armbänder GmbH, incubed IT GmbH, Infineon Technologies Austria AG, Isovolta AG, Kostwein Holding GmbH, and Privatstiftung Kärntner Sparkasse. We are grateful to the anonymous reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Gebser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

El-Kholany, M.M.S., Ali, R., Gebser, M. (2023). Hybrid ASP-Based Multi-objective Scheduling of Semiconductor Manufacturing Processes. In: Gaggl, S., Martinez, M.V., Ortiz, M. (eds) Logics in Artificial Intelligence. JELIA 2023. Lecture Notes in Computer Science(), vol 14281. Springer, Cham. https://doi.org/10.1007/978-3-031-43619-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43619-2_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43618-5

  • Online ISBN: 978-3-031-43619-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics