Skip to main content

The Problem of Corrosion in Pipelines

  • Chapter
  • First Online:
Corrosion and Reliability Assessment of Inspected Pipelines

Abstract

Pipelines condition is space-dependent, defined by the soil properties surrounding the pipeline, the way pipes are installed (e.g., underground, aboveground), and the efficiency of protection measures (e.g., coatings, cathodic protection). Pipelines are subjected to different threats, which can be classified as manufacturing or mechanical failures, operational failures, third-party actions, natural forces, or corrosion attacks. This chapter focuses on the corrosion thinning at the inner or the outer pipelines walls. Corrosion defects may follow different degradation mechanisms depending on the properties of the soil surrounding the pipe, the fluid being transported, and the mechanical condition of the pipe. This chapter describes the pipelines main corrosion mechanisms and their common preventive measures. Corrosion mechanisms include uniform (general) corrosion, pitting, erosion-corrosion, stray current corrosion, Microbiologically-Influenced Corrosion (MIC), and stress corrosion cracking. This chapter also presents the main contributions from the soil properties, operation and fluid factors, and the material properties of the corrosion degradation. The main objective is to identify the principal factors favoring corrosion degradation of underground pipelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cathodes and anodes are defined as the electrode of an electrolytic cell at which reduction (oxidation) is the principal reaction.

  2. 2.

    \(1\,\upmu \mathrm {m}=10^{-6}\,\mathrm {m}.\)

References

  1. R. Akid, Corrosion of Engineering Materials (Wiley, 2004), pp. 487–542

    Google Scholar 

  2. G.S. Frankel, Fundamentals of Corrosion Kinetics (Springer Netherlands, Dordrecht, 2016), pp. 17–32

    Google Scholar 

  3. Z. Ahmad, B.J. AbdulAeem, I.S. Hussaini, Factors affecting uniform corrosion. http://faculty.kfupm.edu.sa/ME/hussaini/Corrosion20Engineering/04.02.02.htm, 2004. Lecture King Fahd University of Petroleum & Minerals, Saudi Arabia

  4. J.R. Davis, Surface Engineering for Corrosion and Wear Resistance (ASM International, 2001)

    Google Scholar 

  5. H.R. Vanaei, A. Eslami, A. Egbewande, A review on pipeline corrosion, in-line inspection (ILI), and corrosion growth rate models. Int. J. Press. Vessel. Pip. 149, 43–54 (2017)

    Article  CAS  Google Scholar 

  6. ASTM, Standard Guide for Examination and Evaluation of Pitting Corrosion. Technical report, American Society for Testing and Materials, 2005. G46-94

    Google Scholar 

  7. G.T. Burstein, P.C. Pistorius, S.P. Mattin, The nucleation and growth of corrosion pits on stainless steel. Corros. Sci. 35(1), 57–62 (1993)

    Article  CAS  Google Scholar 

  8. S.D. Cramer, B.S. Covino Jr. (eds.), Corrosion: Fundamentals, Testing, and Proteccion. ASM Handbook (ASM International, 2003)

    Google Scholar 

  9. M. Hagarová, J. Cervová, F. Jaš, Selected types of corrosion degradation of pipelines. J. Czech Assoc. Corros. Eng. 59(1), 30–36 (2015)

    Google Scholar 

  10. D. Cetin, M.L. Aksu, Corrosion behavior of low-alloy steel in the presence of Desulfotomaculum sp. Corros. Sci. 51(8), 1584–1588 (2009)

    Article  CAS  Google Scholar 

  11. D. Xu, W. Huang, G. Ruschau, J. Hornemann, J. Wen, T. Gu, Laboratory investigation of MIC threat due to hydrotest using untreated seawater and subsequent exposure to pipeline fluids with and without SRB spiking. Eng. Fail. Anal. 28, 149–159 (2013)

    Article  CAS  Google Scholar 

  12. P. Marcus, Corrosion Mechanisms in Theory and Practice Corrosion Technology (Taylor & Francis, 2011)

    Google Scholar 

  13. C. Rhodes, Feeding and healing the world: through regenerative agriculture and permaculture. Sci. Prog. 95, 345–446 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L. Davison, S. Springman, Soil description and classification. http://environment.uwe.ac.uk/geocal/SoilMech/classification/default.htm, 2000

  15. Soil Survey, Illustrated guide to soil taxonomy. Technical report, U.S. Department of Agriculture, Natural Resources Conservation Service, Lincoln, Nebraska, 2015

    Google Scholar 

  16. M.F. Nawaz, G. Bourrié, F. Trolard, Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 33(2), 291–309 (2013)

    Article  Google Scholar 

  17. S. Hillier, Erosion, Sedimentation and Sedimentary Origin of Clays (Springer, Berlin/Heidelberg, 1995), pp. 162–219

    Google Scholar 

  18. T.R. Jack, M.J. Wilmott, Corrosion by Soils, chapter 25. (Wiley, 2011), pp. 333–349

    Google Scholar 

  19. Soil Science Division, Examination and Description of Soil Profiles. United States Department of Agriculture, 2017

    Google Scholar 

  20. MULTIQUIP INC, Soil compaction Handbook. Technical report, 2011. G46-94

    Google Scholar 

  21. J.N. Murray, P.J. Moran, Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy. Corrosion 45(1), 34–43 (1989)

    Article  CAS  Google Scholar 

  22. R.A. King, A Review of Soil Corrosiveness with Particular Reference to Reinforced Earth. Technical report, Transport and Road Research Laboratory, 1977. ISSN 0305-1315

    Google Scholar 

  23. A. Benmoussa, M. Hadjel, M. Traisnel, Corrosion behavior of API 5L X-60 pipeline steel exposed to near-neutral pH soil simulating solution. Mater. Corros. 57(10), 771–777 (2006)

    Article  CAS  Google Scholar 

  24. S.K. Gupta, B.K. Gupta, The critical soil moisture content in the underground corrosion of mild steel. Corros. Sci. 19(3), 171–178 (1979)

    Article  CAS  Google Scholar 

  25. E.A. Noor, A.H. Al-Moubaraki, Influence of soil moisture content on the corrosion behavior of X60 steel in different soils. Arab. J. Sci. Eng. 39(7), 5421–5435 (2014)

    Article  CAS  Google Scholar 

  26. E. Schaschl, G.A. Marsh, Some new views on soil corrosion. Mater. Prot. 2(11), 8–17 (1963)

    Google Scholar 

  27. F.E. Kulman, Microbiological corrosion of buried steel pipe. Corrosion 9(1), 11–18 (1953)

    Article  Google Scholar 

  28. F.P. Miller, J.E. Foss, D.C. Wolf, Soil surveys: their synthesis, confidence limits, and utilization for corrosion assessment of soil, in Underground Corrosion, ed. by E. Escalante (ASTM International, West Conshohocken, 1981), pp. 3–23

    Chapter  Google Scholar 

  29. M. Wasim, S. Shoaib, N.M. Mubarak, Inamuddin, A.M. Asiri, Factors influencing corrosion of metal pipes in soils. Environ. Chem. Lett. 16(3), 861–879 (2018)

    Google Scholar 

  30. I.S. Cole, D. Marney, The science of pipe corrosion: a review of the literature on the corrosion of ferrous metals in soils. Corros. Sci. 56, 5–16 (2012)

    Article  CAS  Google Scholar 

  31. P.P. Xanthakos, Ground Anchors and Anchored Structures. A Wiley Interscience Publication (Wiley, 1991)

    Google Scholar 

  32. L. Arriba-Rodriguez, J. Villanueva-Balsera, F. Ortega-Fernandez, F. Rodriguez-Perez, Methods to evaluate corrosion in buried steel structures: a review. Metals 8(5), 334 (2018)

    Google Scholar 

  33. R. Petersen, R.E. Melchers, Long-term corrosion of cast iron cement lined pipes, in Corrosion & Prevention 2012: Corrosion Management for a Sustainable World: Transport, Energy, Mining, Life Extension and Modelling, 2012. http://hdl.handle.net/1959.13/1327302

  34. W.A. Hamilton, Sulphate-reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39(1), 195–217 (1985). PMID: 3904600

    Article  CAS  PubMed  Google Scholar 

  35. R. Amaya-Gómez, E. Bastidas-Arteaga, F. Muñoz, M. Sánchez-Silva, Statistical soil characterization of an underground corroded pipeline using in-line inspections. Metals 11(2), 1–22 (2021)

    Article  Google Scholar 

  36. S. Papavinasam, Corrosion Control in the Oil and Gas Industry (Gulf Professional Publishing, 2014)

    Google Scholar 

  37. O. Shabarchin, S. Tesfamariam, Internal corrosion hazard assessment of oil & gas pipelines using Bayesian belief network model. J. Loss Prev. Process Ind. 40(Supplement C), 479–495 (2016)

    Google Scholar 

  38. A. Kale, B.H. Thacker, N. Sridhar, J.C. Waldhart, A probabilistic model for internal corrosion of gas pipeline, in 2004 International Pipeline Conference, Alberta, 2004

    Google Scholar 

  39. A.M. El-Sherik, Trends in Oil and Gas Corrosion Research and Technologies. Woodhead Publishing Series in Energy (Woodhead Publishing, 2017)

    Google Scholar 

  40. N. Zhang, D. Zeng, Z. Zhang, W. Zhao, G. Yao, Effect of flow velocity on pipeline steel corrosion behaviour in H2S/CO2 environment with sulphur deposition. Corros. Eng. Sci. Technol. 53(5), 370–377 (2018)

    Article  Google Scholar 

  41. A.A. Khadom, A.S. Yaro, A.A.H. Kadum, A.S. AlTaie, A.Y. Musa, The effect of temperature and acid concentration on corrosion of low carbon steel in hydrochloric acid media. Am. J. Appl. Sci. 6, 1403–1409 (2009)

    Article  CAS  Google Scholar 

  42. Y. Qi, H. Luo, S. Zheng, C. Chen, Z. Lv, M. Xiong, Effect of temperature on the corrosion behavior of carbon steel in hydrogen sulphide environments. Int. J. Electrochem. Sci. 9, 2101–2112 (2014)

    Article  Google Scholar 

  43. J.E. Bringas (ed.), Handbook of Comparative World Steel Standards (ASTM International, 2004). ASTM DS67B

    Google Scholar 

  44. Y. Song, G. Jiang, Y. Chen, Y. Zhao, P. Tian, Effects of chloride ions on corrosion of ductile iron and carbon steel in soil environments. Sci. Rep. 7(6865), 1–13 (2017)

    Google Scholar 

  45. A. Cervantes-Tobón, J.G. Godinez-Salcedo, J.L. González-Velázquez, M. Díaz-Cruz, Corrosion rates of API 5L X-52 and X-65 steels in synthetic Brines and Brines with H2S as a function of rate in a rotating cylinder electrode. Int. J. Electrochem. Sci. 9, 2454–2469 (2014)

    Article  Google Scholar 

  46. I. Thompson, J.R. Saithala, Review of pipeline coating systems from an operator’s perspective. Corros. Eng. Sci. Technol. 51(2), 118–135 (2016)

    Article  CAS  Google Scholar 

  47. D.G. Weldon, Failure Analysis of Paints and Coatings (Wiley, 2009)

    Google Scholar 

  48. S.H. Lee, W.K. Oh, J.G. Kim, Acceleration and quantitative evaluation of degradation for corrosion protective coatings on buried pipeline: Part II. Application to the evaluation of polyethylene and coal-tar enamel coatings. Prog. Org. Coat. 76(4), 784–789 (2013)

    CAS  Google Scholar 

  49. T. Byrnes, Pipeline coatings, in Trends in Oil and Gas Corrosion Research and Technologies, ed. by A.M. El-Sherik. Woodhead Publishing Series in Energy (Woodhead Publishing, 2017), pp. 563–591

    Google Scholar 

  50. S. Papavinasam, M. Attard, R. Revie, Evolution of external pipeline coatings for corrosion protection – a review. Corros. Rev. 26(5–6), 373–438 (2008)

    CAS  Google Scholar 

  51. M.S. Okyere, Corrosion Protection for the Oil and Gas Industry: Pipelines, Subsea Equipment, and Structures (CRC Press, 2019)

    Google Scholar 

  52. X.M. Li, O. Rosas, H. Castaneda, Deterministic modeling of API5L X52 steel in a coal-tar-coating/cathodic-protection system in soil. Int. J. Press. Vessel. Pip. 146, 161–170 (2016)

    Article  CAS  Google Scholar 

  53. D. Dorling, J. Gianetto, Pipeline Welding from the Perspective of Safety and Integrity (Wiley, 2015)

    Google Scholar 

  54. J.R. Davis, Corrosion of Weldments (ASM International, 2006)

    Google Scholar 

  55. A.C. Murariu, N. Pleşu, Investigations on corrosion behaviour of welded joint in ASTM A355P5 alloy steel pipe. Int. J. Electrochem. Sci. 10, 10832–10846 (2015)

    Article  CAS  Google Scholar 

  56. K.M. Dzioyev, K.D. Basiyev, G.I. Khabalov, E.V. Dzarukayev, Stress corrosion processes in the metal and welded joints in gas pipelines. Weld. Int. 28(9), 717–721 (2014)

    Article  Google Scholar 

  57. Q. Qiao, G. Cheng, W. Wu, Y. Li, H. Huang, Z. Wei, Failure analysis of corrosion at an inhomogeneous welded joint in a natural gas gathering pipeline considering the combined action of multiple factors. Eng. Fail. Anal. 64, 126–143 (2016)

    Article  CAS  Google Scholar 

  58. C. Garcia, F. Martin, P. de Tiedra, Y. Blanco, M. Lopez, Pitting corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell. Corros. Sci. 50(4), 1184–1194 (2008)

    Article  CAS  Google Scholar 

  59. I.A. Chaves, R.E. Melchers, Pitting corrosion in pipeline steel weld zones. Corros. Sci. 53(12), 4026–4032 (2011)

    Article  CAS  Google Scholar 

  60. I. Matsushima, Localized Corrosion of Iron and Steel. Electrochemical Society Series (Wiley, 2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Amaya-Gómez, R., Bastidas-Arteaga, E., Sánchez-Silva, M., Schoefs, F., Muñoz, F. (2024). The Problem of Corrosion in Pipelines. In: Corrosion and Reliability Assessment of Inspected Pipelines . Springer, Cham. https://doi.org/10.1007/978-3-031-43532-4_3

Download citation

Publish with us

Policies and ethics