Skip to main content

Minimizing Energy Consumption of Deep Learning Models by Energy-Aware Training

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2023 (ICIAP 2023)

Abstract

Deep learning models undergo a significant increase in the number of parameters they possess, leading to the execution of a larger number of operations during inference. This expansion significantly contributes to higher energy consumption and prediction latency. In this work, we propose EAT, a gradient-based algorithm that aims to reduce energy consumption during model training. To this end, we leverage a differentiable approximation of the \(\ell _0\) norm, and use it as a sparse penalty over the training loss. Through our experimental analysis conducted on three datasets and two deep neural networks, we demonstrate that our energy-aware training algorithm EAT is able to train networks with a better trade-off between classification performance and energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/iliaishacked/sponge_examples.

References

  1. Albericio, J., Judd, P., Hetherington, T.H., Aamodt, T.M., Jerger, N.D.E., Moshovos, A.: Cnvlutin: ineffectual-neuron-free deep neural network computing. In: 43rd ACM/IEEE ISCA (2016)

    Google Scholar 

  2. Chen, Y., Emer, J.S., Sze, V.: Eyeriss: a spatial architecture for energy-efficient dataflow for convolutional neural networks. In: 43rd ACM/IEEE ISCA (2016)

    Google Scholar 

  3. Cinà, A.E., Grosse, K., Demontis, A., Biggio, B., Roli, F., Pelillo, M.: Machine learning security against data poisoning: are we there yet? CoRR (2022)

    Google Scholar 

  4. Cinà, A.E., et al.: Wild patterns reloaded: a survey of machine learning security against training data poisoning. ACM Comput. Surv. (2023)

    Google Scholar 

  5. Cinà, A.E., Vascon, S., Demontis, A., Biggio, B., Roli, F., Pelillo, M.: The hammer and the nut: is bilevel optimization really needed to poison linear classifiers? In: IJCNN (2021)

    Google Scholar 

  6. Cinà, A.E., Demontis, A., Biggio, B., Roli, F., Pelillo, M.: Energy-latency attacks via sponge poisoning. ArXiv (2022)

    Google Scholar 

  7. Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. In: ICLR (2019)

    Google Scholar 

  8. Han, S., et al.: EIE: efficient inference engine on compressed deep neural network. In: 43rd ACM/IEEE ISCA (2016)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  10. Hinton, G., Vinyals, O., Dean, J., et al.: Distilling the knowledge in a neural network. arXiv preprint (2015)

    Google Scholar 

  11. Houben, S., Stallkamp, J., Salmen, J., Schlipsing, M., Igel, C.: Detection of traffic signs in real-world images: the German traffic sign detection benchmark. In: IJCNN (2013)

    Google Scholar 

  12. Hu, H., Peng, R., Tai, Y.W., Tang, C.K.: Network trimming: a data-driven neuron pruning approach towards efficient deep architectures. arXiv preprint (2016)

    Google Scholar 

  13. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: CVPR (2018)

    Google Scholar 

  14. Jung, S., et al.: Learning to quantize deep networks by optimizing quantization intervals with task loss. In: CVPR (2019)

    Google Scholar 

  15. Krizhevsky, A.: Learning multiple layers of features from tiny images. Technical report (2009)

    Google Scholar 

  16. Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional networks via global & dynamic filter pruning. In: IJCAI (2018)

    Google Scholar 

  17. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolutional networks through network slimming. In: ICCV (2017)

    Google Scholar 

  18. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  19. Luo, J., Wu, J.: Autopruner: an end-to-end trainable filter pruning method for efficient deep model inference. Pattern Recognit. 107, 107461 (2020)

    Article  Google Scholar 

  20. Molchanov, P., Tyree, S., Karras, T., Aila, T., Kautz, J.: Pruning convolutional neural networks for resource efficient inference. In: ICLR (2017)

    Google Scholar 

  21. Nguyen, T.A., Tran, A.: Input-aware dynamic backdoor attack. In: NeurIPS (2020)

    Google Scholar 

  22. Nguyen, T.A., Tran, A.T.: Wanet - imperceptible warping-based backdoor attack. In: ICLR (2021)

    Google Scholar 

  23. Nurvitadhi, E., Sheffield, D., Sim, J., Mishra, A.K., Venkatesh, G., Marr, D.: Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In: International Conference on Field-Programmable Technology (2016)

    Google Scholar 

  24. Osborne, M.R., Presnell, B., Turlach, B.A.: On the lasso and its dual. J. Comput. Graph. Stat. 9(2), 319–337 (2000)

    MathSciNet  Google Scholar 

  25. Parashar, A., et al.: SCNN: an accelerator for compressed-sparse convolutional neural networks. In: Proceedings of the 44th Annual International Symposium on Computer Architecture, ISCA (2017)

    Google Scholar 

  26. Shumailov, I., Zhao, Y., Bates, D., Papernot, N., Mullins, R.D., Anderson, R.: Sponge examples: energy-latency attacks on neural networks. In: EuroS &P (2021)

    Google Scholar 

  27. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  28. Xu, J., Li, Z., Du, B., Zhang, M., Liu, J.: Reluplex made more practical: leaky relu. 2020 IEEE Symposium on Computers and Communications (ISCC) (2020)

    Google Scholar 

  29. Zhou, A., Yao, A., Guo, Y., Xu, L., Chen, Y.: Incremental network quantization: towards lossless CNNs with low-precision weights. In: ICLR (2017)

    Google Scholar 

  30. Zhou, Z., Zhou, W., Li, H., Hong, R.: Online filter clustering and pruning for efficient convnets. In: 2018 25th IEEE International Conference on Image Processing (ICIP). IEEE (2018)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Spoke 10 “Logistics and Freight” within the Italian PNRR National Centre for Sustainable Mobility (MOST), CUP I53C22000720001; the project SERICS (PE00000014) under the NRRP MUR program funded by the EU - NGEU; the PRIN 2017 project RexLearn (grant no. 2017TWNMH2), funded by the Italian Ministry of Education, University and Research; and by BMK, BMDW, and the Province of Upper Austria in the frame of the COMET Programme managed by FFG in the COMET Module S3AI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Emanuele Cinà .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazzaro, D. et al. (2023). Minimizing Energy Consumption of Deep Learning Models by Energy-Aware Training. In: Foresti, G.L., Fusiello, A., Hancock, E. (eds) Image Analysis and Processing – ICIAP 2023. ICIAP 2023. Lecture Notes in Computer Science, vol 14234. Springer, Cham. https://doi.org/10.1007/978-3-031-43153-1_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-43153-1_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-43152-4

  • Online ISBN: 978-3-031-43153-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics