Skip to main content

Computational Models for COVID-19 Dynamics Prediction

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Abstract

In a viral pandemic, predicting the number of infected per day and the total number of cases in each wave of possible variants is intended to aid decision-making in real public health practice. This paper compares the efficiency of three very simple models in predicting the behavior of COVID-19 in Spain during the first waves. The Verhulst, Gompertz and SIR models are used to predict pandemic behavior using past daily cases as observed data. The parameters of each model are identified at each wave by solving the corresponding inverse problem through a member of the PSO family and then their posterior distribution is calculated using the Metropolis-Hastings algorithm to compare the robustness of each predictive model. It can be concluded that all these models are incomplete without the corresponding parameter uncertainty analysis. In these cases, the comparison of the posterior prediction with respect to the predictive model used shows that this work can be used for real-life decision making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elmousalami, H.H., Hassanien, A.E.: Day level forecasting for coronavirus disease (COVID-19) spread: Analysis, modeling and recommendations, arXiv preprint arXiv:2003.07778 (2020)

  2. Hu, Z., Ge, Q., Jin, L., Xiong, M.: Artificial intelligence forecasting of covid-19 in China. arXiv preprint arXiv:2002.07112 (2020)

  3. Kim, Y., Ryu, H., Lee, S.: Agent-based modeling for super-spreading events: a case study of MERS-CoV transmission dynamics in the Republic of Korea. Int. J. Environ. Res. Public Health 15, 2369 (2018)

    Article  Google Scholar 

  4. Satsuma, J., Willox, R., Ramani, A., Grammaticos, B., Carstea, A.: Extending the SIR epidemic model. Phys. A. 336, 369–375 (2004)

    Article  Google Scholar 

  5. Britton, T.: Stochastic epidemic models: a survey. Math. Biosci. 225, 24–35 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou, Y., Ma, Z., Brauer, F.: A discrete epidemic model for SARS transmission and control in China. Math. Comput. Model. 40, 1491–1506 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. London, Serie A Containing Pap. Math. Phys. Charact. 115, 700–721 (1927)

    MATH  Google Scholar 

  8. Verhulst, P.F.: Notice sur la loi que la population suit dans son accroissement. Correspondance Math. Phys. 10, 113–121 (1838)

    Google Scholar 

  9. Dawed, M.Y., Koya, P.R., Goshu, A.T.: Mathematical modelling of population growth: the case of logistic and von bertalanffy models. Open J. Model. Simul. 02(04), 113–126 (2014). https://doi.org/10.4236/ojmsi.2014.24013

    Article  Google Scholar 

  10. Hillen, T.: Applications and limitations of the verhulst model for populations. Math Biol. 6, 19–20 (2003)

    Google Scholar 

  11. Sunday, J., James, A., Ibijola, E., Ogunrinde, R., Ogunyebi, S.A.: Computational approach to verhulst-pearl model. IOSR J. Math. 2(6), 45–52 (2012)

    Google Scholar 

  12. Gompertz, B.: On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philos. Trans. R. Soc. London B: Biol. Sci. 182, 513–585 (1825)

    Google Scholar 

  13. Altrock, P.M., Liu, L.L., Michor, F.: The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer. 15(12), 730–745 (2015). https://doi.org/10.1038/nrc4029

    Article  Google Scholar 

  14. Barbolosi, D., Ciccolini, J., Lacarelle, B., Barlesi, F., André, N.: Computational oncology–mathematical modelling of drug regimens for precision medicine. Nat. Rev. Clin. Oncol. 13(4), 242–254 (2016). https://doi.org/10.1038/nrclinonc.2015.204

    Article  Google Scholar 

  15. Benzekry, S., et al.: Classical mathematical models for description and prediction of experimental tumor growth. PLOS Comput. Biol. 10(8), e1003800 (2014)

    Article  Google Scholar 

  16. Winsor, C.P.: The Gompertz curve as a growth curve. Proc. Nat. Acad. Sci. 18(1), 1–8 (1932). https://doi.org/10.1073/pnas.18.1.1

    Article  MATH  Google Scholar 

  17. Fernández-Martínez, J.L., Fernández-Muñiz, Z., Cernea, A., Kloczkowski, A.: Predictive mathematical models of the short-term and long-term growth of the COVID-19 pandemic. Comput. Math. Methods Med. 2021, 1–14 (2021). https://doi.org/10.1155/2021/5556433

    Article  Google Scholar 

  18. Malthus, T.R.: An Essay on the Principle of Population, as it Affects the Future Improvement of Society. First edition with remarks on the speculations of Godwin, M, Condorcet, and other writers (1798)

    Google Scholar 

  19. Centro de Coordinación de Alertas y Emergencias Sanitarias. Ministerio de Sanidad. Gobierno de España. Actualización covid-19. https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/Actualizacion_365_COVID-19.pdf. Accessed 30 Apr 2021

Download references

Acknowledgment

AK acknowledges the financial support from NSF grant DBI 1661391, and NIH grants R01GM127701, and R01HG012117.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrzej Kloczkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kloczkowski, A., Fernández-Martínez, J.L., Fernández-Muñiz, Z. (2023). Computational Models for COVID-19 Dynamics Prediction. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14126. Springer, Cham. https://doi.org/10.1007/978-3-031-42508-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42508-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42507-3

  • Online ISBN: 978-3-031-42508-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics