Skip to main content

Training Set Preparation for Deep Model Learning Inpatients with Ischemic Brain Lesions and Gender Identity Disorder

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2023)

Abstract

Increasing number of stress related cerebrovascular insults becomes alerting younger involved as well. Cerebrovascular diseases are the most common cause of functional disabilities, stroke being first, of which 87% are ischemic strokes in the USA. The cause of ischemia likely lies in cerebral small vessel disease, which includes lacunar infarcts, microbleeds, white matter lesions (WML) and enlarged perivascular spaces. The pathophysiology of ischemic WML is unclear, despite the development of radiological markers. The gold standard in the evaluation of WML is a volumetric analysis using magnetic resonance imaging (MRI).

The aim of this study was training set preparation and volumetric analysis of multiple or solitary WML due to ischemic changes in patients with depressions and comparing it with a control group without white matter lesions and ischemic changes.

We included 20 participants, 10 with WML and 10 controls as part of the process of applying deep machine learning and preparing a training set for the automated detection of WML. Participants under went 1.5 T 3D-T1v, MPRAGE and 3D FLAIR MRI. Images were aligned with MNI space to normalize their intensity. Manual segmentation was then performed as the gold standard for segmentation in MNI space with ITK-SNAP using T1v and FLAIR images.

A summary estimation of all volumes of the image sections was performed. The total volume of all brain lesions was measured without division into hemispheres and their localization. The total volume of the brain was measured and correlated with the same parameters of subjects without noticeable ischemic changes in the brain.

We have shown that ischemic lesions of the cerebrum white matter affect reduced total brain volume. The studies will aid in coming up with better treatment guidelines for preventive health care and management of cerebrovascular diseases to address the specific needs of individuals with gender identity disorders or transgenders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

TBV:

total brain volume

WML:

white matter lesions

MRI:

magnetic resonance imaging

CSVD:

Cerebral small vessel disease

CMB:

cerebral microbleeds

DICOM:

digital imaging and communications in medicine

NIfTI:

Neuroimaging Informatics Technology Initiative

WMH:

white matter hyperintensities

PD:

proton density

References

  1. Gender, Nature, and Nurture - 2nd Edition – Richard, A. Lippa – Routle. https://www.routledge.com/Gender-Nature-and-Nurture/Lippa/p/book/9780805853452. Accessed 23 Mar 2023

  2. Luders, E., et al.: Regional gray matter variation in male-to-female transsexualism. Neuroimage 46, 904–907 (2009). https://doi.org/10.1016/j.neuroimage.2009.03.048

    Article  Google Scholar 

  3. Majid, D.S.A., et al.: Neural systems for own-body processing align with gender identity rather than birth-assigned sex. Cereb. Cortex. 30, 2897–2909 (2020). https://doi.org/10.1093/cercor/bhz282

    Article  Google Scholar 

  4. Mohammadi, M.R., Khaleghi, A.: Transsexualism: a different viewpoint to brain changes. Clin. Psychopharmacol. Neurosci. 16, 136–143 (2018). https://doi.org/10.9758/cpn.2018.16.2.136

    Article  Google Scholar 

  5. Cuadrado-Godia, E., et al.: Cerebral small vessel disease: a review focusing on pathophysiology, biomarkers, and machine learning strategies. J. Stroke. 20, 302–320 (2018). https://doi.org/10.5853/jos.2017.02922

    Article  Google Scholar 

  6. World Health Organization. Stroke, Cerebrovascular accident (2014). https://www.emro.who.int/health-topics/stroke-cerebrovascular-accident/index.html. Accessed 14 Feb 2023

  7. Centers for Disease Control and Prevention. Stroke facts (2014). https://www.cdc.gov/stroke/facts.html. Accessed 14 Feb 2023

  8. Istraživanje zdravlja stanovništva Srbije (2019). https://www.batut.org.rs/download/publikacije/ZdravljeStanovnistva2019.pdf. Accessed 14 Feb 2023

  9. Kühne, M., et al.: For the swiss-AF investigators: silent brain infarcts impact on cognitive function in atrial fibrillation. Eur. Heart J. 43, 2127–2135 (2022). https://doi.org/10.1093/eurheartj/ehac020

    Article  Google Scholar 

  10. Swieten, J.C.V., Hout, J.H.W.V.D., Ketel, B.A.V., Hijdra, A., Wokke, J.H.J., Gijn, J.V.: Periventricular lesions in the white matter on magnetic resonance imaging in the elderly: a morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain 114, 761–774 (1991). https://doi.org/10.1093/brain/114.2.761

  11. van Swieten, J.C., et al.: Hypertension in the elderly is associated with white matter lesions and cognitive decline. Ann. Neurol. 30, 825–830 (1991). https://doi.org/10.1002/ana.410300612

    Article  Google Scholar 

  12. Meyer, J.S., Kawamura, J., Terayama, Y.: White matter lesion in the elderly. J. Neurol. Sci. 110, 1–7 (1992)https://doi.org/10.1016/0022-510X(92)90002-3

  13. Dickinson, K.M., Clifton, P.M., Keogh, J.B.: Endothelial function is impaired after a high-salt meal in healthy subjects. Am. J. Clin. Nutr. 93, 500–505 (2011). https://doi.org/10.3945/ajcn.110.006155

    Article  Google Scholar 

  14. Lin, J., Wang, D., Lan, L., Fan, Y.: Multiple factors involved in the pathogenesis of white matter lesions. BioMed Res. Int. 2017, 1–9 (2017). https://doi.org/10.1155/2017/9372050

    Article  Google Scholar 

  15. Bright, F., et al.: Neuroinflammation in frontotemporal dementia. Nat. Rev. Neurol. 15, 540–555 (2019). https://doi.org/10.1038/s41582-019-0231-z

    Article  Google Scholar 

  16. Bots, M.L., et al.: Cerebral white matter lesions and atherosclerosis in the Rotterdam study. The Lancet. 341, 1232–1237 (1993). https://doi.org/10.1016/0140-6736(93)91144-B

    Article  Google Scholar 

  17. Liao, D., et al.: Presence and severity of cerebral white matter lesions and hypertension, its treatment, and its control: the ARIC study. Stroke 27, 2262–2270 (1996). https://doi.org/10.1161/01.STR.27.12.2262

    Article  Google Scholar 

  18. Rostrup, E., et al.: The spatial distribution of age-related white matter changes as a function of vascular risk factors—results from the LADIS study. Neuroimage 60, 1597–1607 (2012). https://doi.org/10.1016/j.neuroimage.2012.01.106

    Article  Google Scholar 

  19. Momjian-Mayor, I., Baron, J.-C.: The pathophysiology of watershed infarction in internal carotid artery disease: review of cerebral perfusion studies. Stroke 36, 567–577 (2005). https://doi.org/10.1161/01.STR.0000155727.82242.e1

    Article  Google Scholar 

  20. van Swieten, J.C., Hijdra, A., Koudstaal, P.J., van Gijn, J.: Grading white matter lesions on CT and MRI: a simple scale. J. Neurol. Neurosurg. Psychiatry. 53, 1080–1083 (1990). https://doi.org/10.1136/jnnp.53.12.1080

    Article  Google Scholar 

  21. Fazekas, F., et al.: CT and MRI rating of white matter lesions. Cerebrovasc. Dis. 13, 31–36 (2002). https://doi.org/10.1159/000049147

    Article  Google Scholar 

  22. Gouw, A.A., et al.: Reliability and sensitivity of visual scales versus volumetry for evaluating white matter hyperintensity progression. Cerebrovasc. Dis. 25, 247–253 (2008). https://doi.org/10.1159/000113863

    Article  Google Scholar 

  23. van Straaten, E.C.W., et al.: Impact of white matter hyperintensities scoring method on correlations with clinical data: the LADIS study. Stroke 37, 836–840 (2006). https://doi.org/10.1161/01.STR.0000202585.26325.74

    Article  Google Scholar 

  24. Marek, M., Horyniecki, M., Frączek, M., Kluczewska, E.: Leukoaraiosis – new concepts and modern imaging. Pol. J. Radiol. 83, 76–81 (2018). https://doi.org/10.5114/pjr.2018.74344

    Article  Google Scholar 

  25. Azizyan, A., Sanossian, N., Mogensen, M.A., Liebeskind, D.S.: Fluid-attenuated inversion recovery vascular hyperintensities: an important imaging marker for cerebrovascular disease. Am. J. Neuroradiol. 32, 1771–1775 (2011). https://doi.org/10.3174/ajnr.A2265

    Article  Google Scholar 

  26. Lao, Z., et al.: Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine. Acad. Radiol. 15, 300–313 (2008). https://doi.org/10.1016/j.acra.2007.10.012

    Article  Google Scholar 

  27. Gorelick, P.B., et al.: Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American heart association/American stroke association. Stroke 42, 2672–2713 (2011). https://doi.org/10.1161/STR.0b013e3182299496

    Article  Google Scholar 

  28. Caligiuri, M.E., Perrotta, P., Augimeri, A., Rocca, F., Quattrone, A., Cherubini, A.: Automatic detection of white matter hyperintensities in healthy aging and pathology using magnetic resonance imaging: a review. Neuroinformatics 13, 261–276 (2015). https://doi.org/10.1007/s12021-015-9260-y

    Article  Google Scholar 

  29. Jack, C.R., et al.: FLAIR histogram segmentation for measurement of leukoaraiosis volume. J. Magn. Reson. Imaging. 14, 668–676 (2001). https://doi.org/10.1002/jmri.10011

    Article  Google Scholar 

  30. Admiraal-Behloul, F., et al.: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly. Neuroimage 28, 607–617 (2005). https://doi.org/10.1016/j.neuroimage.2005.06.061

    Article  Google Scholar 

  31. Amador, K., Wilms, M., Winder, A., Fiehler, J., Forkert, N.D.: Predicting treatment-specific lesion outcomes in acute ischemic stroke from 4D CT perfusion imaging using spatio-temporal convolutional neural networks. Med. Image Anal. 82, 102610 (2022). https://doi.org/10.1016/j.media.2022.102610

    Article  Google Scholar 

  32. Chen, L., Bentley, P., Rueckert, D.: Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. NeuroImage Clin. 15, 633–643 (2017). https://doi.org/10.1016/j.nicl.2017.06.016

    Article  Google Scholar 

  33. Rachmadi, M.F., Valdés-Hernández, M.D.C., Makin, S., Wardlaw, J., Komura, T.: Automatic spatial estimation of white matter hyperintensities evolution in brain MRI using disease evolution predictor deep neural networks. Med. Image Anal. 63, 101712 (2020). https://doi.org/10.1016/j.media.2020.101712

  34. Clèrigues, A., Valverde, S., Bernal, J., Freixenet, J., Oliver, A., Lladó, X.: Acute and sub-acute stroke lesion segmentation from multimodal MRI. Comput. Methods Programs Biomed. 194, 105521 (2020). https://doi.org/10.1016/j.cmpb.2020.105521

    Article  Google Scholar 

  35. Yushkevich, P.A., et al.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31, 1116–1128 (2006). https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  Google Scholar 

  36. SPM12. https://www.fil.ion.ucl.ac.uk/spm/software/spm12/. Accessed 01 Feb 2023

  37. El-Feky, M., Gaillard, F.: Fazekas scale for white matter lesions. In: Radiopaedia.org (2014). https://doi.org/10.53347/rID-28447

  38. Lo, B.P., Donnelly, M.R., Barisano, G., Liew, S.-L.: A standardized protocol for manually segmenting stroke lesions on high-resolution T1-weighted MR images. Front. Neuroimaging. 1, 1098604 (2023). https://doi.org/10.3389/fnimg.2022.1098604

    Article  Google Scholar 

  39. Gryska, E., Schneiderman, J., Björkman-Burtscher, I., Heckemann, R.A.: Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. BMJ Open 11, e042660 (2021). https://doi.org/10.1136/bmjopen-2020-042660

    Article  Google Scholar 

  40. Jiménez de la Peña, M.M., Gómez Vicente, L., García Cobos, R., Martínez de Vega, V.: Correlación neurorradiológica de las afasias. Mapa cortico-subcortical del lenguaje. Radiología. 60, 250–261 (2018)https://doi.org/10.1016/j.rx.2017.12.008

  41. Schaller-Paule, M.A., Fritz, D., Schaefer, J.H., Hattingen, E., Foerch, C., Seiler, A.: Distribution pattern analysis of cortical brain infarcts on diffusion-weighted magnetic resonance imaging: a hypothesis-generating approach to the burden of silent embolic stroke. J. Am. Heart Assoc. 11, e026438 (2022). https://doi.org/10.1161/JAHA.122.026438

    Article  Google Scholar 

  42. Tubi, M.A., et al.: White matter hyperintensities and their relationship to cognition: effects of segmentation algorithm. Neuroimage 206, 116327 (2020). https://doi.org/10.1016/j.neuroimage.2019.116327

    Article  Google Scholar 

  43. Barber, R., et al.: White matter lesions on magnetic resonance imaging in dementia with lewy bodies, Alzheimer’s disease, vascular dementia, and normal aging. J. Neurol. Neurosurg. Psychiatry. 67, 66–72 (1999). https://doi.org/10.1136/jnnp.67.1.66

    Article  Google Scholar 

  44. Wang, L., Leonards, C.O., Sterzer, P., Ebinger, M.: White matter lesions and depression: a systematic review and meta-analysis. J. Psychiatr. Res. 56, 56–64 (2014). https://doi.org/10.1016/j.jpsychires.2014.05.005

    Article  Google Scholar 

  45. Zhang, Y., et al.: A deep learning algorithm for white matter hyperintensity lesion detection and segmentation. Neuroradiology 64, 727–734 (2022). https://doi.org/10.1007/s00234-021-02820-w

    Article  Google Scholar 

  46. Scherer, M., et al.: Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage. Stroke 47, 2776–2782 (2016). https://doi.org/10.1161/STROKEAHA.116.013779

    Article  Google Scholar 

Download references

Acknowledgment

This research was funded by the National Centre for Research and Development and prepared within the framework of the scientific project “A new Model of medical care with use of modern methods of non-invasive clinical assessment and Telemedicine in patients with heart failure” (STRATEGMED3/305274/8/NCBR/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Karpiel .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

None declared.

Appendix (I–VI)

Appendix (I–VI)

See Figs. 1, 2, 3, 4, 5 and 6

Fig. 1.
figure 1

Targeted lesion

Fig. 2.
figure 2

Lesion probability mask

Fig. 3.
figure 3

Lesion probability mask

Fig. 4.
figure 4

Masked lesion

Fig. 5.
figure 5

Total volume WMH and controls (± SD).

Fig. 6.
figure 6

Volumetric differences between brains

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Starcevic, A., Vucinic, B., Karpiel, I. (2023). Training Set Preparation for Deep Model Learning Inpatients with Ischemic Brain Lesions and Gender Identity Disorder. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2023. Lecture Notes in Computer Science(), vol 14126. Springer, Cham. https://doi.org/10.1007/978-3-031-42508-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-42508-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-42507-3

  • Online ISBN: 978-3-031-42508-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics