Skip to main content

Total Hip Arthroplasty Modelling and Load Simulation, in COMSOL Multiphysics

  • Chapter
  • First Online:
Current and Future Trends in Health and Medical Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1112))

  • 241 Accesses

Abstract

In total hip arthroplasty (THA), has been over time, an exponential growth of studies with Finite Element Method (FEM) computational simulation in order to obtain the prosthesis with a longer life duration, however just a few in COMSOL Multiphysics software. The main goal of this study was to perform stress and strain studies under different load conditions for the titanium and cobalt-chromium alloys in cementless prostheses. In software COMSOL Multiphysics, 3D models of a femur and a Lubinus SPII implant with two different alloys, were tested. Two COMSOL studies were carried out, one stationary and the other dynamic (time-dependent) for both material’s prostheses. In a stationary study for walking activity, the titanium alloy implant showed an equivalent von Mises stress maximum level of 0.9 × 108 Pa at the contact between the implant and the bone, having been found a similar value by other investigators ( Prasad, Karthika, et al. “Metallic biomaterials: current challenges and opportunities.“ Materials 10.8 (2017): 884.). In the Co-Cr alloy prosthesis, the equivalent von Mises stress for walking activity was like titanium alloy. The shear stress and normal stress of the two prostheses were compared. In the dynamic study for climbing stair activity the equivalent von Mises stress was greater 7.5 times than in walking activity for Co-Cr alloy implant. The maximum stress (stationary and dynamic) of the titanium alloy implant is slightly higher than the Co-Cr alloy implant, which indicates that Co-Cr prostheses react better when subjected to loads.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.americanelements.com/cobalt-chromium-alloy.

  2. 2.

    https://orthoload.com/database/?implantId.

References

  1. A. Fontalis et al., Advances and innovations in total hip arthroplasty. SICOT-J 7 (2021)

    Google Scholar 

  2. M. Merola, S. Affatato, Materials for hip prostheses: a review of wear and loading considerations. Materials 12(3), 495 (2019)

    Article  Google Scholar 

  3. D. Savio, A. Bagno, When the total hip replacement fails: A review on the stress-shielding effect. Processes 10(3), 612 (2022)

    Article  Google Scholar 

  4. P. Forte, H. Neiva, D.A. Marinho, Sports biomechanics: monitoring health and performance. J Men’s Health 1 (2021)

    Google Scholar 

  5. S. Chatterjee, Finite Element Analysis in Biomechanics. Advances in Computational Approaches in Biomechanics. IGI Global, pp. 16–47 (2022)

    Google Scholar 

  6. J. Anguiano-Sanchez, et al., Influence of PEEK coating on hip implant stress shielding: a finite element analysis. Computational and mathematical methods in medicine (2016)

    Google Scholar 

  7. B. Innocenti et al., The use of computational models in orthopedic biomechanical research. Human Orthopaedic Biomechanics. Academic Press, pp. 681–712 (2022)

    Google Scholar 

  8. J. Jamari, et al., Adopted walking condition for computational simulation approach on bearing of hip joint prosthesis: review over the past 30 years. Heliyon e12050 (2022)

    Google Scholar 

  9. M.S.M. Suri, et al.,Influence of dimple depth on lubricant thickness in elastohydrodynamic lubrication for metallic hip implants using fluid structure interaction (FSI) approach. Malaysian J. Med. Heal. Sci. 16, 28–34 (2020)

    Google Scholar 

  10. S. Joseph, Clinical and functional outcome of total hip replacement (Rajiv Gandhi University of Health Sciences (India), Diss, 2010)

    Google Scholar 

  11. S. Renner, Determination of muscle forces acting on the femur and stress analysis. no. November, pp. 1–97 (2007)

    Google Scholar 

  12. R. Glenister, S. Sharma, Anatomy, bony pelvis and lower limb, hip. StatPearls [Internet]. StatPearls Publishing (2021)

    Google Scholar 

  13. K.N. Chethan, et al., Comparative study of femur bone having different boundary conditions and bone structure using finite element method. Open Biomed. Eng. J. 12.1 (2018)

    Google Scholar 

  14. P. Damm, et al., ESB Clinical biomechanics award 2018: muscle atrophy-related increased joint loading after total hip arthroplasty and their postoperative change from 3 to 50 months. Clin. Biomech. 65, 105-109 (2019)

    Google Scholar 

  15. D.P. Byrne, K.J. Mulhall, J.F. Baker, Anatomy & biomechanics of the hip. Open Sports Med. J. 4.1 (2010)

    Google Scholar 

  16. K.N. Chethan et al., Static structural analysis of different stem designs used in total hip arthroplasty using finite element method. Heliyon 5(6), e01767 (2019)

    Article  Google Scholar 

  17. F. Van Praet, M. Mulier, To cement or not to cement acetabular cups in total hip arthroplasty: a systematic review and re-evaluation. SICOT-J 5 (2019)

    Google Scholar 

  18. A. Vieira, A.T. Marques, J.A. Simões, Caracterização à Fadiga de Próteses de Anca Compósitas. Revista da Associação Portuguesa de Análise Experimental de Tensões ISSN 1646, 7078 (2008)

    Google Scholar 

  19. C.Y. Hu, T.-R. Yoon, Recent updates for biomaterials used in total hip arthroplasty. Biomater. Res. 22.1, 1–12 (2018)

    Google Scholar 

  20. K. Magalhães, Avaliação biomecânica do desempenho de prótese femoral com rigidez variável. Diss. Instituto Politecnico de Braganca (Portugal) (2014)

    Google Scholar 

  21. Guedes, José Américo da Silva, Estudo numérico e experimental da biomecânica do fémur intacto e com prótese de anca inserida: Biomecânica da anca (2000)

    Google Scholar 

  22. J. Maggs, M. Wilson, The relative merits of cemented and uncemented prostheses in total hip arthroplasty. Indian J. Orthopaed. 51, 377–385 (2017)

    Article  Google Scholar 

  23. M. Varacallo, et al., Joint perception and patient perceived satisfaction after total hip and knee arthroplasty in the American population. J. Orthop. 15.2, 495–499 (2018)

    Google Scholar 

  24. Y.E. Delikanli, M.C. Kayacan, Design, manufacture, and fatigue analysis of lightweight hip implants. J. Appl. Biomater. Funct. Mater. 17(2), 2280800019836830 (2019)

    Google Scholar 

  25. M.R. Feldesman, J. Geoffrey Kleckner, J.K. Lundy, Femur/stature ratio and estimates of stature in mid‐and late‐Pleistocene fossil hominids. Am. J. Phys. Anthropol. 83.3, 359–372 (1990)

    Google Scholar 

  26. C. Mulenga, A cross-section study to determine human height using femur length in Zambian population. Acta Sci. Microb. 2(11), 57–61 (2019)

    Article  Google Scholar 

  27. M. Wod, Height estimation from Skeletal remains. Student thesis in Biological Anthropology. Institute of Biology, University of Southern Denmark (2008)

    Google Scholar 

  28. N. Özkaya, et al., Applications of statics to biomechanics. Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation, 101–139 (2017)

    Google Scholar 

  29. J. Skubich, S. Piszczatowski, Model of loadings acting on the femoral bone during gait. J. Biomech. 87, 54–63 (2019)

    Article  Google Scholar 

  30. Ramos, António Manuel de Amaral Monteiro. Estudo numérico e experimental de uma nova componente femoral da prótese de anca cimentada. Diss. Universidade de Aveiro (Portugal) (2006)

    Google Scholar 

  31. A. Martins, Análise da Marcha na Artroplastia da Anca (Faculdade de Desporto da Universidade do Porto, Diss, 2007)

    Google Scholar 

  32. R. Phellan ., Real‐time biomechanics using the finite element method and machine learning: review and perspective. Med. Phy. 48.1, 7–18 (2021)

    Google Scholar 

  33. J.C. Fialho et al., Computational hip joint simulator for wear and heat generation. J. Biomech. 40.11, 2358–2366 (2007)

    Google Scholar 

  34. J.E. Gubaua, G. Wessling Oening Dicati, J. Tomás Pereira, Influence of material stiffness of total hip prosthesis in isotropic bone-remodeling process analysis. Conf. XXXVIII Iberian-Latin Am. Congr. Comput. Methods Eng. (2017)

    Google Scholar 

  35. Y. Peng, et al., Computational modeling of polyethylene wear in total hip arthroplasty using patient-specific kinematics-coupled finite element analysis. Tribol. Intern. 129, 162–166 (2019)

    Google Scholar 

  36. M.I. Ammarullah, et al., Wear analysis of acetabular cup on metal-on-metal total hip arthroplasty with dimple addition using finite element method. AIP Conf. Proc. 2391(1), AIP Publishing LLC (2022)

    Google Scholar 

  37. H. Basri et al.,The analysis of dimple geometry on artificial hip joint to the performance of lubrication. J. Phy. Conf. Series. 1198(4), IOP Publishing (2019)

    Google Scholar 

  38. H. Basri et al., The analysis of the dimple arrangement of the artificial hip joint to the performance of lubrication. IOP Conf. Series: Mater. Sci. Eng. 620(1), IOP Publishing (2019)

    Google Scholar 

  39. I. Campioni, et al., Hip prostheses computational modeling: FEM simulations integrated with fatigue mechanical tests. Biomed. Imaging Comput. Model. Biomech., 81–108 (2013)

    Google Scholar 

  40. X. Song, et al., Construction of breast cancer photoacoustic imaging model based on COMSOL. 4th Optics Young Scientist Summit (OYSS 2020) 11781. SPIE (2021)

    Google Scholar 

  41. Z. KHOMSI, et al.,Contribution for the early detection of breast cancer by a superficial thermography solution. 2020 International Conference on Electrical and Information Technologies (ICEIT). IEEE (2020)

    Google Scholar 

  42. D. Wang et al., Nano-scale physical properties characteristic to metastatic intestinal cancer cells identified by high-speed scanning ion conductance microscope. Biomaterials 280, 121256 (2022)

    Google Scholar 

  43. M.R. Gorji, et al., Analysis of the effect of liquid viscosity on the aerosol distribution during Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC) using computational modeling. Eur. J. Surg. Oncol. 48.2, e159 (2022)

    Google Scholar 

  44. M.I. Almomani, Y.F. Makableh, M. Al-Fandi, Design and numerical simulation of a nanostructured ultraviolet shield for radiation protection applications using COMSOL. Mater. Today Commun. 33, 104148 (2022)

    Article  Google Scholar 

  45. R.T. Shuvo, A.S.M. Shamsul Arefin, Simulation based non-invasive detection of skin cancer (Basal Cell Carcinoma) using millimeter-wave reflectometry. 2020 IEEE Region 10 Symposium (TENSYMP). IEEE (2020)

    Google Scholar 

  46. M. Radmilović-Radjenović, et al., Finite element analysis of the microwave ablation method for enhanced lung cancer treatment. Cancers 13.14, 3500 (2021)

    Google Scholar 

  47. T. Akano, Numerical study of prosthetic knee replacement using finite element analysis. J. Biomimet. Biomater. Biomed. Eng. 44, Trans Tech Publications Ltd. (2020)

    Google Scholar 

  48. R. Ji, et al., Numerical and experimental investigation on the abrasive flow machining of artificial knee joint surface. Crystals 13.3, 430 (2023)

    Google Scholar 

  49. E. Dosmar, et al., Compartmental and COMSOL multiphysics 3D modelling of drug diffusion to the vitreous following the administration of a sustained-release drug delivery system. Pharmaceutics 13.11, 1862 (2021)

    Google Scholar 

  50. R.V. Suganthan, et al., Finite element analysis of the human eye for a range of intraocular pressure. Adv. Control Instrum. Syst., 173–181 (2020)

    Google Scholar 

  51. H. Shatnawi, Computational fluid flow model for the development of an arterial bypass graft. CFD Lett. 14(10), 99–111 (2022)

    Article  Google Scholar 

  52. M.S.A. Jamali, Z. Ismail, N. Saidina Amin, Effect of different types of stenosis on generalized power law model of blood flow in a bifurcated artery. J. Adv. Res. Fluid Mech. Thermal Sci. 87.3, 172–183 (2021)

    Google Scholar 

  53. N. Khadka, M. Yadav, A. Ghimire, Novel stemless hip prosthesis design and finite element analysis to validate stemless prosthesis for reduction of aseptic loosening in total hip arthroplasty (2020)

    Google Scholar 

  54. W. Prins et al., Excellent results with the cemented Lubinus SP II 130-mm femoral stem at 10 years of follow-up: 932 hips followed for 5–15 years. Acta Orthopaedica 85.3, 276–279 (2014)

    Google Scholar 

  55. M.O. Heller et al., Determination of muscle loading at the hip joint for use in pre-clinical testing. J. Biomech. 38(5), 1155–1163 (2005)

    Article  Google Scholar 

  56. N. Verdonschot, Preclinical testing of cemented THR implants: pre-normative research for European standard. Proceedings of the 14th conference of European Society of Biomechanics (2004)

    Google Scholar 

  57. J. WlodarsKi, Mechanical conditions of endurance of the joint: bone cement implant. Proceedings of the 13th conference of European Society of Biomechanics, 294–295 (2002)

    Google Scholar 

  58. K. Prasad, et al., Metallic biomaterials: current challenges and opportunities. Materials 10.8, 884 (2017)

    Google Scholar 

  59. C. Luo, et al., Femoral stress changes after total hip arthroplasty with the ribbed prosthesis: a finite element analysis. BioMed Res. Intern. (2020)

    Google Scholar 

  60. C. Truesdell, et al., The non-linear field theories of mechanics. Springer Berlin Heidelberg (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuno Gueiral .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gueiral, N., Nogueira, E. (2023). Total Hip Arthroplasty Modelling and Load Simulation, in COMSOL Multiphysics. In: Daimi, K., Alsadoon, A., Seabra Dos Reis, S. (eds) Current and Future Trends in Health and Medical Informatics. Studies in Computational Intelligence, vol 1112. Springer, Cham. https://doi.org/10.1007/978-3-031-42112-9_15

Download citation

Publish with us

Policies and ethics