Skip to main content

Non-human Clostridioides difficile Reservoirs and Sources: Animals, Food, Environment

  • Chapter
  • First Online:
Updates on Clostridioides difficile in Europe

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 1435))

Abstract

Clostridioides difficile is ubiquitous and is found in humans, animals and in variety of environments. The substantial overlap of ribotypes between all three main reservoirs suggests the extensive transmissions. Here we give the overview of European studies investigating farm, companion and wild animals, food and environments including water, soil, sediment, wastewater treatment plants, biogas plants, air, and households. Studies in Europe are more numerous especially in last couple of years, but are still fragmented in terms of countries, animal species, or type of environment covered. Soil seem to be the habitat of divergent unusual lineages of C. difficile. But the most important aspect of animals and environment is their role in C. difficile transmissions and their potential as a source for human infection is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abay S, Ahmed EF, Aydin F et al (2022) Presence of Clostridioides difficile in cattle feces, carcasses, and slaughterhouses: molecular characterization and antibacterial susceptibility of the recovered isolates. Anaerobe 75:102575

    Article  CAS  PubMed  Google Scholar 

  • Agnoletti F, Arcangeli G, Barbanti F et al (2019) Survey, characterization and antimicrobial susceptibility of Clostridium difficile from marine bivalve shellfish of North Adriatic Sea. Int J Food Microbiol 298:74–80

    Article  CAS  PubMed  Google Scholar 

  • Albuquerque C, Pagnossin D, Landsgaard K, Simpson J, Brown D, Irvine J, Candlish D, Ridyard AE, Douce G, Millins C (2021) The duration of antibiotic treatment is associated with carriage of toxigenic and non-toxigenic strains of Clostridioides difficile in dogs. PLoS One 16(5):e0245949. https://doi.org/10.1371/journal.pone.0245949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al Saif N, Brazier JS (1996) The distribution of Clostridium difficile in the environment of South Wales. J Med Microbiol 45:133–137

    Article  CAS  PubMed  Google Scholar 

  • Al-Saif NM, O’Neill GL, Magee JT et al (1998) PCR-ribotyping and pyrolysis mass spectrometry fingerprinting of environmental and hospital isolates of Clostridium difficile. J Med Microbiol 47:117–1121

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Bouza E et al (2009) Prevalence of Clostridium difficile in diarrhoeic and non-diarrhoeic piglets. Vet Microbiol 137:302–305

    Article  PubMed  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Pelaez T et al (2013) High prevalence of the epidemic Clostridium difficile PCR ribotype 078 in Iberian free-range pigs. Res Vet Sci 95:358–361

    Article  PubMed  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Martinez-Nevado E et al (2014) Shedding of Clostridium difficile PCR-ribotype 078 by zoo animals, and report of an unstable metronidazole-resistant isolate from a zebra foal (Equus quagga burchellii). Vet Microbiol 169:218–222

    Article  PubMed  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Peláez T et al (2015) Faecal shedding of antimicrobial-resistant Clostridium difficile strains by dogs. J Small Anim Pract 56:190–195

    Article  PubMed  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Harmanus C et al (2017) Prevalence and characteristics of Clostridium perfringens and Clostridium difficile in dogs and cats attended in diverse veterinary clinics from the Madrid region. Anaerobe 48:47–55

    Article  PubMed  Google Scholar 

  • Álvarez-Pérez S, Blanco JL, Astorga RJ et al (2018) Distribution and tracking of Clostridium difficile and Clostridium perfringens in a free-range pig abattoir and processing plant. Food Res Int 113:456–464

    Article  PubMed  Google Scholar 

  • Alves F, Castro R, Pinto M, Nunes A, Pomba C, Oliveira M, Silveira L, Gomes JP, Oleastro M (2023) Molecular epidemiology of Clostridioides difficile in companion animals: Genetic overlap with human strains and public health concerns. Front Public Health 10:1070258. https://doi.org/10.3389/fpubh.2022.1070258

    Article  PubMed  PubMed Central  Google Scholar 

  • Andrés-Lasheras S, Bolea R, Mainar-Jaime RC et al (2017) Presence of Clostridium difficile in pig faecal samples and wild animal species associated with pig farms. J Appl Microbiol 122:462–472

    Article  PubMed  Google Scholar 

  • Andrés-Lasheras S, Martín-Burriel I, Mainar-Jaime RC, Morales M, Kuijper E, Blanco JL, Chirino-Trejo M, Bolea R (2018) Preliminary studies on isolates of Clostridium difficile from dogs and exotic pets. BMC Vet Res 14(1):77. https://doi.org/10.1186/s12917-018-1402-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Avbersek J, Janezic S, Pate M et al (2009) Diversity of Clostridium difficile in pigs and other animals in Slovenia. Anaerobe 15:252–255

    Article  CAS  PubMed  Google Scholar 

  • Avbersek J, Pirs T, Pate M et al (2014) Clostridium difficile in goats and sheep in Slovenia: characterisation of strains and evidence of age-related shedding. Anaerobe 15:252–255

    Article  Google Scholar 

  • Bandelj P, Trilar T, Raenik J et al (2011) Zero prevalence of Clostridium difficile in wild passerine birds in Europe. FEMS Microbiol Lett 321:183–185

    Article  CAS  PubMed  Google Scholar 

  • Bandelj P, Trilar T, Blagus R et al (2014) Prevalence and molecular characterization of Clostridium difficile isolated from European Barn Swallows (Hirundo rustica) during migration. BMC Vet Res 10:40

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandelj P, Blagus R, Briski F et al (2016) Identification of risk factors influencing Clostridium difficile prevalence in middle-size dairy farms. Vet Res 47:41

    Article  PubMed  PubMed Central  Google Scholar 

  • Bandelj P, Golob M, Ocepek M et al (2017) Antimicrobial susceptibility patterns of Clostridium difficile isolates from family dairy farms. Zoonoses Public Health 64:213–221

    Article  CAS  PubMed  Google Scholar 

  • Bandelj P, Harmanus C, Blagus R et al (2018) Quantification of Clostridioides (Clostridium) difficile in feces of calves of different age and determination of predominant Clostridioides difficile ribotype 033 relatedness and transmission between family dairy farms using multilocus-variable-number tandem-repeat analysis. BMC Vet Res 14(1):298

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbanti F, Spigaglia P (2020) Microbial characteristics of human and animal isolates of Clostridioides difficile in Italy : Results of the Istituto Superiore di Sanità in the years 2006-2016. Amaerobe 61:102136

    CAS  Google Scholar 

  • Bauer MP, Notermans DW, van Benthem BH et al (2011) Clostridium difficile infection in Europe: a hospital based survey. Lancet 377:63–73

    Article  PubMed  Google Scholar 

  • Baverud V, Gustafsson A, Franklin A et al (2003) Clostridium difficile: prevalence in horses and environment, and antimicrobial susceptibility. Equine Vet J 35:465–471

    Article  CAS  PubMed  Google Scholar 

  • Baverud V, Gustafsson A, Franklin A et al (2004) Clostridium difficile diarrhea: infection control in horses. Vet Clin N Am Equine Pract 20:615–630

    Article  Google Scholar 

  • Bjöersdorff OG, Lindberg S, Kiil K, Persson S, Guardabassi L, Damborg P (2021) Dogs are carriers of Clostridioides difficile lineages associated with human community-acquired infections. Anaerobe 67:102317. https://doi.org/10.1016/j.anaerobe.2020.102317

    Article  CAS  PubMed  Google Scholar 

  • Blasi F, Lovito C, Albini E et al (2021) Clostridioides difficile in calves in central Italy : prevalence, molecular typing, antimicrobial susceptibility and associations with antibiotic administration. Animals (Basel) 11(2):515

    Article  PubMed  PubMed Central  Google Scholar 

  • Blau K, Gallert C (2023) Prevalence, antimicrobial resistance and toxin-encoding genes of Clostridioides difficile from environmental sources contaminated by feces. Antibiotics (Basel, Switzerland) 12(1):162. https://doi.org/10.3390/antibiotics12010162

    Article  CAS  PubMed  Google Scholar 

  • Bojesen AM, Olsen KE, Bectelsen MF (2006) Fatal enterocolitis in Asian elephants (Elephas maximus) caused by Clostridium difficile. Vet Microbiol 116:329–335

    Article  PubMed  Google Scholar 

  • Borriello SP, Honour P, Turner T et al (1983) Household pets as a potential reservoir for Clostridium difficile infection. J Clin Pathol 36:84–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouttier S, Barc MC, Felix B et al (2010) Clostridium difficile in ground meat, France. Emerg Infect Dis 16:733–735

    Article  PubMed  PubMed Central  Google Scholar 

  • Burt SA, Siemeling L, Kuijper EJ et al (2012) Vermin on pig farms are vectors of Clostridium difficile PCR-ribotypes 078 and 045. Vet Microbiol 160:256–258

    Article  CAS  PubMed  Google Scholar 

  • Burt SA, Meijer K, Burggraaff P et al (2018) Wild mice in and around the city of Utrecht, the Netherlands, are carriers of Clostridium difficile but not ESBL-producing Enterobacteriaceae, Salmonella spp. or MRSA. Lett Appl Microbiol 67(5):513–549

    Article  CAS  PubMed  Google Scholar 

  • Candel-Pérez C, Santaella-Pascual J, Ros-Berruezo G et al (2021) Occurrence of Clostridioides (Clostridium) difficile in poultry giblets at slaughter and in retail pork and poultry meat in Southeastern Spain. J Food Prot 84(2):310–314

    Article  PubMed  Google Scholar 

  • Carvalho GM, Ramos CP, Lobato FCF et al (2022) Laboratory diagnosis of Clostridioides (Clostridium) difficile infection in domestic animals : a short review. Anaerobe 75:102574

    Article  CAS  PubMed  Google Scholar 

  • Cizek A, Masarikova M, Mares J, Brajerova M, Krutova M (2022) Detection of plasmid-mediated resistance to metronidazole in Clostridioides difficile from river water. Microbiology spectrum 10(4):e0080622. https://doi.org/10.1128/spectrum.00806-22

    Article  CAS  PubMed  Google Scholar 

  • Cooper KK, Songer JG, Uzal FA (2013) Diagnosing clostridial enteric disease in poultry. J Vet Diagn Invest 25:314–327

    Article  PubMed  Google Scholar 

  • Dabard J, Dubos F, Martinet L et al (1979) Experimental reproduction of neonatal diarrhea in young gnotobiotic hares simultaneously associated with Clostridium difficile and other Clostridium strains. Infect Immun 24:7–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Darwich L, Seminati C, Lopez-Olvera JR et al (2021) Detection of Beta-Lactam-Resistant Escherichia coli and toxigenic Clostridium difficile strains in wild boars foraging in an anthropization gradient. Animal (Basel) 11(6):1585

    Google Scholar 

  • De Boer E, Zwartkruis-Nahuis A, Heuvelink A et al (2009) Clostridium difficile PCR-ribotype 078 toxinotype V found in diarrhoeal pigs identical to isolates from affected humans. Environ Microbiol 144:561–511

    Google Scholar 

  • Diab SS, Songer G, Uzal FA (2013) Clostridium difficile infection in horses: a review. Vet Microbiol 167:42–49

    Article  CAS  PubMed  Google Scholar 

  • Drigo I, Mazzolini E, Bacchin C et al (2015) Molecular characterization and antimicrobial susceptibility of Clostridium difficile isolated from rabbits raised for meat production. Vet Microbiol 181:303–307

    Article  CAS  PubMed  Google Scholar 

  • Ducarmon QR, van der Bruggen T, Harmanus C, Sanders IMJG, Daenen LGM, Fluit AC, Vossen RHAM, Kloet SL, Kuijper EJ, Smits WK (2022) Clostridioides difficile infection with isolates of cryptic clade C-II: a genomic analysis of polymerase chain reaction ribotype 151. Clin Microbiol Infect. Advance online publication. https://doi.org/10.1016/j.cmi.2022.12.003

  • Duijvestijn M, Mughini-Gras L, Schuurman N, Schijf W, Wagenaar JA, Egberink H (2016) Enteropathogen infections in canine puppies: (Co-)occurrence, clinical relevance and risk factors. Vet Microbiol 15:115–122. https://doi.org/10.1016/j.vetmic.2016.09.006

    Article  Google Scholar 

  • Eckert C, Burghoffer B, Barbut F et al (2013) Contamination of ready to eat raw vegetables with Clostridium difficile in France. J Med Microbiol 62:1435–1438

    Article  CAS  PubMed  Google Scholar 

  • Finsterwalder SK, Loncaric I, Cabal A, Szostak MP, Barf LM, Marz M, Allerberger F, Burgener IA, Tichy A, Feßler AT, Schwarz S, Monecke S, Ehricht R, Ruppitsch W, Spergser J, Künzel F (2022) Dogs as carriers of virulent and resistant genotypes of Clostridioides difficile. Zoonoses Public Health 69(6):673–681. https://doi.org/10.1111/zph.1295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frentrup M, Thiel N, Junker V, Behrens W, Münch S, Siller P, Kabelitz T, Faust M, Indra A, Baumgartner S, Schepanski K, Amon T, Roesler U, Funk R, Nübel U (2021) Agricultural fertilization with poultry manure results in persistent environmental contamination with the pathogen Clostridioides difficile. Environ Microbiol 23(12):7591–7602. https://doi.org/10.1111/1462-2920.15601

    Article  CAS  PubMed  Google Scholar 

  • Froschle B, Messelhäusser U, Höller C et al (2015) Fate of Clostridium botulinum and incidence of pathogenic clostridia in biogas processes. J Appl Microbiol 119:936–947

    Article  CAS  PubMed  Google Scholar 

  • Hafiz S (1974) Clostridium difficile and its toxins. Ph.D. Thesis. Department of Microbiology, University of Leeds, UK

    Google Scholar 

  • Hammitt MC, Bueschel DM, Keel MK et al (2008) A possible role for Clostridium difficile in the etiology of calf enteritis. Vet Microbiol 127:343–352

    Article  CAS  PubMed  Google Scholar 

  • Hampikyan H, Bingol EB, Muratoglu K et al (2018) The prevalence of C. difficile in cattle and sheep carcasses and the antibiotic susceptibility of isolates. Meat Sci 139:120–124

    Article  CAS  PubMed  Google Scholar 

  • Hargreaves KR, Colvin HV, Patel KV et al (2013) Genetically diverse Clostridium difficile strains harboring abundant prophages in an estuarine environment. Appl Environ Microbiol 79:6236–6243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heise J, Witt P, Maneck C et al (2021) Prevalence and phylogenetic relationship of Clostridioides difficile strains in fresh poultry meat samples processed in different cutting plants. Int J Food Microbiol 339:109032

    Article  CAS  PubMed  Google Scholar 

  • Hensgens MP, Keessen EC, Squire MM et al (2012) Clostridium difficile infection in the community: a zoonotic disease? Clin Microbiol Infect 18:635–645

    Article  CAS  PubMed  Google Scholar 

  • Hoffer E, Haechler H, Frei R et al (2010) Low occurrence of Clostridium difficile in faecal samples of healthy calves and pigs at slaughter and in minced meat in Switzerland. J Food Prot 73:973–975

    Article  CAS  PubMed  Google Scholar 

  • Hopman NEM, Oorburg D, Sanders I et al (2011) High occurrence of various Clostridium difficile PCR-ribotypes in pigs arriving at the slaughterhouse. Vet Q 31:179–181

    Article  CAS  PubMed  Google Scholar 

  • Hunter D, Bellhouse R, Baker K (1981) Clostridium difficile isolated from a goat. Vet Rec 109:291–292

    Article  CAS  PubMed  Google Scholar 

  • Indra A, Lassing H, Baliko N et al (2009) Clostridium difficile: a new zoonotic agent? Wein Klin Wochensr 121:91–95

    Article  Google Scholar 

  • Janezic S, Ocepek M, Zidaric V et al (2012) Clostridium difficile genotypes other than ribotype 078 that are prevalent among human, animal and environmental isolates. BMC Microbiol 12:48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janezic S, Marín M, Martín A, Rupnik M (2015) A new type of toxin A-negative, toxin B-positive Clostridium difficile strain lacking a complete tcdA gene. J Clin Microbiol 53(2):692–695. https://doi.org/10.1128/JCM.02211-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janezic S, Potocnik M, Zidaric V et al (2016) Highly divergent Clostridium difficile strains isolated from the environment. PLoS One 11:e0167101

    Article  PubMed  PubMed Central  Google Scholar 

  • Janezic S, Mlakar S, Rupnik M (2018) Dissemination of Clostridium difficile spores between environment and households: Dog paws and shoes. Zoonoses Public Health. 65(6):669–674. https://doi.org/10.1111/zph.12475

    Article  CAS  PubMed  Google Scholar 

  • Janezic S, Smrke J, Rupnik M (2020) Isolation of Clostridioides difficile from different outdoor sites in the domestic environment. Anaerobe 62:102183. https://doi.org/10.1016/j.anaerobe.2020.102183

    Article  CAS  PubMed  Google Scholar 

  • Jobstl M, Heuberger S, Indra A et al (2010) Clostridium difficile in raw products of animal origin. Int J Food Microbiol 138:172–175

    Article  CAS  PubMed  Google Scholar 

  • Jones MA, Hunter D (1983) Isolation of Clostridium difficile from pigs. Vet Rec 112:253

    Article  CAS  PubMed  Google Scholar 

  • Kecerova Z, Cizek A, Nyc O, Krutova M (2019) Clostridium difficile isolates derived from Czech horses are resistant to enrofloxacin; cluster to clades 1 and 5 and ribotype 033 predominates. Anaerobe 56:17–21. https://doi.org/10.1016/j.anaerobe.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  • Keessen EC, Donswijk CJ, Hol SP et al (2011a) Aerial dissemination of Clostridium difficile on a pig farm and its environment. Environ Res 111:1027–1032

    Article  CAS  PubMed  Google Scholar 

  • Keessen EC, van den Berkt AJ, Haasjes NH et al (2011b) The relation between farm specific factors and prevalence of C. difficile in slaughter pigs. Vet Microbiol 154:130–134

    Article  CAS  PubMed  Google Scholar 

  • Keessen EC, Hensgens MP, Spigaglia P et al (2013) Antimicrobial susceptibility profiles of human and piglet Clostridium difficile PCR-ribotype 078. Antimicrob Resist Infect Control 2:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Kiss D, Bilkei G (2005) A new periparturient disease in Eastern Europe, Clostridium difficile causes postparturient sow losses. Theriogenology 63:17–23

    Article  CAS  PubMed  Google Scholar 

  • Knetsch CW, Connor TR, Mutreja A et al (2014) Whole genome sequencing reveals potential spread of Clostridium difficile between humans and farm animals in the Netherlands, 2002 to 2011. Euro Surveill 19:20954

    Article  CAS  PubMed  Google Scholar 

  • Knight DR, Squire MM, Collins DA et al (2016) Genome analysis of Clostridium difficile PCR ribotype 014 lineage in Australian pigs and humans reveals a diverse genetic repertoire and signatures of long-range interspecies transmission. Front Microbiol 7:2138

    PubMed  Google Scholar 

  • Knight DR, Imwattana K, Kullin B, Guerrero-Araya E, Paredes-Sabja D, Didelot X, Dingle KE, Eyre DW, Rodríguez C, Riley TV (2021) Major genetic discontinuity and novel toxigenic species in Clostridioides difficile taxonomy. eLife 10:e64325. https://doi.org/10.7554/eLife.64325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koene MGJ, Mevius D, Wagenaar JA et al (2012) Clostridium difficile in Dutch animals: their presence, characteristics and similarities with human isolates. Clin Microbiol Infect 18:778–784

    Article  CAS  PubMed  Google Scholar 

  • Kotila SM, Pitkänen T, Brazier J et al (2013) Clostridium difficile contamination of public tap water distribution system during a waterborne outbreak in Finland. Scand J Public Health 41:541–545

    Article  PubMed  Google Scholar 

  • Krijger IM, Meerburg BG, Harmanus C et al (2019) Clostridium difficile in wild rodents and insectivores in the Netherlands. Lett Appl Microbiol 69(1):35–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krutova M, Zouharova M, Matejkova J et al (2018) The emergence of Clostridium difficile PCR-ribotype 078 in piglets in the Czech Republic clusters with Clostridium difficile PCR ribotype 078 isolates from Germany, Japan and Taiwan. Int J Med Microbiol 308(7):770–775

    Article  CAS  PubMed  Google Scholar 

  • Lim SC, Knight DR, Riley TV (2020) Clostridium difficile and one health. Clin Microbiol Infect 26(7):857–863

    Article  CAS  PubMed  Google Scholar 

  • Lysons RJ, Hall GA, Lemcke RM et al (1980) Studies of organisms possibly implicated in swine dysentery. In: Proceedings of the 6th International Pig Veterinary Society

    Google Scholar 

  • Marcos P, Whyte P, Rogers T et al (2021) The prevalence of Clostridioides difficile on farms, in abattoirs and in retail foods in Ireland. Food Microbiol 98:10378. https://doi.org/10.1016/j.fm.2021.103781

    Article  CAS  Google Scholar 

  • Marcos P, Whyte P, Burgess C, Ekhlas D, Bolton D (2022) Detection and genomic characterisation of Clostridioides difficile from spinach fields. Pathogens (Basel, Switzerland) 11(11):1310. https://doi.org/10.3390/pathogens11111310

    Article  CAS  PubMed  Google Scholar 

  • Masarikova M, Simkova I, Plesko M et al (2020) The colonisation of calves in Czech large-scale dairy farms by clonally-related Clostridioides difficile of the sequence type 11 represented by ribotypes 033 and 126. Microorganisms 8(6):901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McElroy MC, Hill M, Moloney G et al (2016) Typhlocolitis associated with C. difficile PCR-ribotypes 078 and 110 in neonatal piglets from a commercial Irish pig herd. Ir Vet J 69:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mertens N, TheuB T, Köchling M et al (2022) Pathogens detected in 205 German farms with porcine neonatal diarrhea in 2017. Vet Sci 9(2):44

    Article  PubMed  PubMed Central  Google Scholar 

  • Moloney G, Eyre DW, Aogáin MM et al (2021) Human and porcine transmission of Clostridioides difficile ribotype 078, Europe. Emerg Infect Dis 27(9):2294–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteagudo LV, Benito AA, Lázaro-Gaspar S et al (2022) Occurrence of rotavirus A genotypes and other enteric pathogens in diarrheic suckling piglets from Spanish swine farms. Animals (Basel) 12(3):251

    Article  PubMed  Google Scholar 

  • Moradigaravand D, Gouliouris T, Ludden C, Reuter S, Jamrozy D, Blane B, Naydenova P, Judge K, Aliyu SH, Hadjirin NF, Holmes MA, Török E, Brown NM, Parkhill J, Peacock S (2018) Genomic survey of Clostridium difficile reservoirs in the East of England implicates environmental contamination of wastewater treatment plants by clinical lineages. Microb Genom 4(3):e000162. https://doi.org/10.1099/mgen.0.000162

    Article  PubMed  PubMed Central  Google Scholar 

  • Noren T, Johansson K, Unemo M (2014) Clostridium difficile PCR-ribotype 046 is common among neonatal pigs and humans in Sweden. Clin Microbiol Infect 20:O2–O6

    Article  CAS  PubMed  Google Scholar 

  • Numberger D, Riedel T, McEwen G, Nübel U, Frentrup M, Schober I, Bunk B, Spröer C, Overmann J, Grossart HP, Greenwood AD (2019) Genomic analysis of three Clostridioides difficile isolates from urban water sources. Anaerobe 56:22–26. https://doi.org/10.1016/j.anaerobe.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  • Orden C, Blanco JL, Álvarez-Pérez S et al (2017a) Isolation of Clostridium difficile from dogs with digestive disorders, including stable metronidazole-resistant strains. Anaerobe 43:78–81

    Article  PubMed  Google Scholar 

  • Orden C, Neila C, Blanco JL et al (2017b) Recreational sandboxes for children and dogs can be a source of epidemic ribotypes of Clostridium difficile. Zoonoses Public Health 65(1):88–95

    Article  PubMed  Google Scholar 

  • Ossiprandi MC, Buttrini M, Bottarelli E et al (2010) Preliminary molecular analysis of Clostridium difficile isolates from healthy horses in northern Italy. Comp Immunol Microbiol Infect Dis 33:e25–e29

    Article  PubMed  Google Scholar 

  • Otten AM, Reid-Smith RJ, Fazil A et al (2010) Disease transmission model for community-associated Clostridium difficile infection. Epidemiol Infect 138:907–914

    Article  CAS  PubMed  Google Scholar 

  • Pasquale V, Romano VJ, Rupnik M et al (2011) Isolation and characterization of Clostridium difficile from shellfish and marine environments. Folia Microbiol (Praha) 56:431–437

    Article  CAS  PubMed  Google Scholar 

  • Pasquale V, Romano VJ, Rupnik M et al (2012) Occurrence of toxigenic Clostridium difficile in edible bivalve molluscs. Food Microbiol 31:309–312

    Article  CAS  PubMed  Google Scholar 

  • Pelaez T, Alcala L, Blanco JL et al (2013) Characterization of swine isolates of Clostridium difficile in Spain: a potential source of epidemic multidrug resistant strains? Anaerobe 22:45–49

    Article  PubMed  Google Scholar 

  • Perrin J, Buogo C, Gallusser A et al (1993) Intestinal carriage of Clostridium difficile in neonate dogs. Zentralbl Veterinarmed B 40:222–226

    CAS  PubMed  Google Scholar 

  • Pirs T, Ocepek M, Rupnik M (2008) Isolation of Clostridium difficile from food animals in Slovenia. J Med Microbiol 57:790–792

    Article  CAS  PubMed  Google Scholar 

  • Pirs T, Avbersek J, Zdouc I et al (2013) Antimicrobial susceptibility of animal and human isolates of C. difficile by broth microdilution. J Med Microbiol 62:1478–1485

    Article  CAS  PubMed  Google Scholar 

  • Proctor A, Cornick NA, Wang C et al (2021) Neonatal piglets are protected from Clostridioides difficile infection by age-dependent increase in intestinal microbial diversity. Microbiol Spectr 9(2)

    Google Scholar 

  • Rabold D, Espelage W, Abu Sin M, Eckmanns T, Schneeberg A, Neubauer H, Möbius N, Hille K, Wieler LH, Seyboldt C, Lübke-Becker A (2018) The zoonotic potential of Clostridium difficile from small companion animals and their owners. PLoS One 13(2):e0193411. https://doi.org/10.1371/journal.pone.0193411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramírez-Vargas G, López-Ureña D, Badilla A, Orozco-Aguilar J, Murillo T, Rojas P, Riedel T, Overmann J, González G, Chaves-Olarte E, Quesada-Gómez C, Rodríguez C (2018) Novel Clade C-I Clostridium difficile strains escape diagnostic tests, differ in pathogenicity potential and carry toxins on extrachromosomal elements. Sci Rep 8(1):13951. https://doi.org/10.1038/s41598-018-32390-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Redding L, Huang E, Ryave J et al (2021) Clostridioides difficile on dairy farms and potential risk to dairy farm workers. Anaerobe 69:102353

    Article  CAS  PubMed  Google Scholar 

  • Riedel T, Wittmann J, Bunk B, Schober I, Spröer C, Gronow S, Overmann J (2017) A Clostridioides difficile bacteriophage genome encodes functional binary toxin-associated genes. J Biotechnol 250:23–28. https://doi.org/10.1016/j.jbiotec.2017.02.017

    Article  CAS  PubMed  Google Scholar 

  • Rivas L, Dupont PY, Gilpin BJ et al (2020) Isolation and characterization of Clostridium difficile from a small survey of wastewater, food and animals in New Zealand. Lett Appl Microbiol 70(1):29–35

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Van Broeck J et al (2012) Clostridium difficile in young farm animals and slaughter animals in Belgium. Anaerobe 18:621–625

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Avesani V, Van Broeck J et al (2013) Presence of Clostridium difficile in pigs and cattle intestinal contents and carcass contamination at slaughterhouse in Belgium. Int J Food Microbiol 166:256–262

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Brévers B et al (2014a) Carriage and acquisition rates of Clostridium difficile in hospitalized horses, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 172:309–317

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Avesani V et al (2014b) Multilocus sequence typing analysis and antibiotic resistance of Clostridium difficile strains, including molecular characterization, multilocus sequence typing and antimicrobial susceptibility of bacterial isolates. Vet Microbiol 172:309–317

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Brévers B et al (2015) Faecal microbiota characterisation of horses using 16 rdna barcoded pyrosequencing, and carriage rate of clostridium difficile at hospital admission. BMC Microbiol 15:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez C, Taminiau B, Van Broeck J et al (2016) Clostridium difficile in food and animals: a comprehensive review. Adv Exp Med Biol 4:65–92

    Article  Google Scholar 

  • Rodriguez C, Hakimi DE, Vanleyssem R et al (2017) Clostridium difficile in beef cattle farms, farmers and their environment : assessing the spread of the bacterium. Vet Microbiol 210:183–187

    Article  PubMed  Google Scholar 

  • Rodriguez C, Taminiau B, Bouchafa L, Romijn S, Van Broeck J, Delmée M, Clercx C, Daube G (2019a) Clostridium difficile beyond stools: dog nasal discharge as a possible new vector of bacterial transmission. Heliyon 5(5):e01629. https://doi.org/10.1016/j.heliyon.2019.e01629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez C, Bouchafa L, Soumillion K, Ngyuvula E, Taminiau B, Van Broeck J, Delmée M, Daube G (2019b) Seasonality of Clostridium difficile in the natural environment. Transbound Emerg Dis 66(6):2440–2449. https://doi.org/10.1111/tbed.13301

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Palacios A, Lejeune JT (2011) Moist-heat resistance, spore aging, and superdormancy in Clostridium difficile. Appl Environ Microbiol 77:3085–3091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Palacios A, Borgmann S, Kline TR et al (2013) Clostridium difficile in foods and animals: history and measures to reduce exposure. Anim Health Res Rev 14:11–29

    Article  PubMed  Google Scholar 

  • Rodríguez-Pallares S, Fernández-Palacios P, Jurado-Tarifa E, Arroyo F, Rodríguez-Iglesias MA, Galán-Sánchez F (2022) Transmission of toxigenic Clostridioides difficile between a pet dog with diarrhea and a 10-month-old infant. Anaerobe 74:102519. https://doi.org/10.1016/j.anaerobe.2022.102519

    Article  PubMed  Google Scholar 

  • Romanazzi V, Bonetta S, Fornasero S et al (2016) Assessing Methanobrevibacter smithii and Clostridium difficile as not conventional faecal indicators in effluents of a wastewater treatment plant integrated with sludge anaerobic digestion. J Environ Manag 184:170–177

    Article  CAS  Google Scholar 

  • Romano V, Albanese F, Dumontet S et al (2012a) Prevalence and genotypic characterization of Clostridium difficile from ruminants in Switzerland. Zoonoses Public Health 59:545–548

    Article  CAS  PubMed  Google Scholar 

  • Romano V, Pasquale V, Krovacekb K et al (2012b) Toxigenic Clostridium difficile PCR ribotypes from wastewater treatment plants in Southern Switzerland. Appl Environ Microbiol 78:6643–6646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romano V, Pasqualea V, Lemee L et al (2018) Clostridioides difficile in the environment, food, animals and humans in southern Italy : Occurrence and genetic relatedness. Comp Immunol Microbiol Infect Dis 59:41–46. https://doi.org/10.1016/j.cimid.2018.08.006

    Article  PubMed  Google Scholar 

  • Rupnik M (2007) Is Clostridium difficile-associated infection a potentially zoonotic and foodborne disease? Clin Microbiol Infect 13:457–459

    Article  CAS  PubMed  Google Scholar 

  • Rupnik M (2010) Clostridium difficile: (re)emergence of zoonotic potential. Clin Infect Dis 51:583–584

    Article  PubMed  Google Scholar 

  • Schneeberg A, Rupnik M, Neubauer H et al (2012) Prevalence and distribution of Clostridium difficile PCR ribotypes in cats and dogs from animal shelters in Thuringia, Germany. Anaerobe 18:484–488

    Article  PubMed  Google Scholar 

  • Schneeberg A, Neubauer H, Schmoock G et al (2013a) Clostridium difficile genotypes in piglet populations in Germany. J Clin Microbiol 51:3796–3803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneeberg A, Neubauer H, Schomoock G et al (2013b) Presence of Clostridium difficile PCR ribotype clusters related to 033, 078 and 045 in diarrhoeic calves in Germany. J Med Microbiol 62:1190–1198. Congress 1980, Copenhagen, p 231

    Article  PubMed  Google Scholar 

  • Scholtzek AD, Heise J, Witt P et al (2022) Contamination of home-grown and retail vegetables with Clostridioides difficile. Anaerobe 74:102512

    Article  CAS  PubMed  Google Scholar 

  • Schoster A, Kunz T, Lauper M, Graubner C, Schmitt S, Weese JS (2019) Prevalence of Clostridium difficile and Clostridium perfringens in Swiss horses with and without gastrointestinal disease and microbiota composition in relation to Clostridium difficile shedding. Vet Microbiol 239:108433. https://doi.org/10.1016/j.vetmic.2019.108433

    Article  CAS  PubMed  Google Scholar 

  • Skraban J, Dzeroski S, Zenko B et al (2013) Changes of poultry faecal microbiota associated with Clostridium difficile colonisation. Vet Microbiol 165:416–424

    Article  PubMed  Google Scholar 

  • Songer JG (2000) Infection of neonatal swine with Clostridium difficile. J Swine Health Prod 4:185–189

    Google Scholar 

  • Spigaglia P, Drigo I, Barbanti F et al (2015) Antibiotic resistance patterns and PCR-ribotyping of Clostridium difficile strains isolated from swine and dogs in Italy. Anaerobe 31:42–46

    Article  CAS  PubMed  Google Scholar 

  • Squire MM, Riley TV (2013) Clostridium difficile infection in human and piglets: a “One health” opportunity. Curr Top Microbiol Immunol 365:299–314

    PubMed  Google Scholar 

  • Stein K, Egan S, Lynch H et al (2017) PCR-distribution of Clostridium difficile in Irish pigs. Anaerobe 48:237–241

    Article  CAS  PubMed  Google Scholar 

  • Steyer A, Gutiérrez-Aguirre I, Rački N et al (2015) The detection rate of enteric viruses and Clostridium difficile in a waste water treatment plant effluent. Food Environ Virol 7:164–172

    Article  CAS  Google Scholar 

  • Tkalec V, Janezic S, Skok B et al (2019) High Clostridium difficile contamination rates of domestic and imported potatoes compared to some other vegetables in Slovenia. Food Microbiol 78:194–200

    Article  PubMed  Google Scholar 

  • Tkalec V, Jamnikar-Ciglenecki U, Rupnik M et al (2020) Clostridioides difficile in national food surveillance, Slovenia, 2015 to 2017. Euro Surveill 25(16):1900479

    Article  PubMed  PubMed Central  Google Scholar 

  • Tkalec V, Viprey V, Davis G et al (2022) Clostridioides difficile positivity rate and PCR ribotype distribution on retail potatoes in 12 European countries, January to June 2018. Euro Surveill 27(15):2100417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tramuta C, Spigaglia P, Barbanti F, Bianchi DM, Boteva C, Di Blasio A, Zoppi S, Zaccaria T, Proroga YTR, Chiavacci L, Dondo A, Decastelli L (2021) Comparison of Clostridioides difficile strains from animals and humans: First results after introduction of C. difficile molecular typing and characterization at the Istituto Zooprofilattico Sperimentale of Piemonte, Liguria e Valle d’Aosta, Italy. Comp Immunol Microbiol Infect Dis 75:101623. https://doi.org/10.1016/j.cimid.2021.101623

    Article  CAS  PubMed  Google Scholar 

  • Von Abercron SMM, Karlsson F, Wigh GT et al (2009) Low occurrence of Clostridium difficile in retail ground meat in Sweden. J Food Prot 72:1732–1734

    Article  Google Scholar 

  • Warriner K, Xu C, Habash M et al (2016) Dissemination of Clostridium difficile in food and the environment: significant sources of C. difficile community acquired infection? J Appl Microbiol 122:542–553

    Article  PubMed  Google Scholar 

  • Weber A, Kroth P, Heil G (1989) The occurrence of Clostridium difficile in fecal samples of dogs and cats. Zentralbl Veterinarmed B 36:568–576

    CAS  PubMed  Google Scholar 

  • Weese JS (2010) Clostridium difficile in food—innocent bystander or serious threat? Clin Microbiol Infect 16:3–10

    Article  CAS  PubMed  Google Scholar 

  • Weese JS (2020) Clostridium (Clostridioides) difficile in animals. J Vet Diagn Invest 32(2):213–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Wetterwik KJ, Trowald-Wigh G, Fernström LL et al (2013) Clostridium difficile in faeces from healthy dogs and dogs with diarrhea. Acta Vet Scand 55:23

    Article  PubMed  PubMed Central  Google Scholar 

  • Williamson CHD, Stone NE, Nunnally AE, Roe CC, Vazquez AJ, Lucero SA, Hornstra H, Wagner DM, Keim P, Rupnik M, Janezic S, Sahl JW (2022) Identification of novel, cryptic Clostridioides species isolates from environmental samples collected from diverse geographical locations. Microb Genom 8(2):000742. https://doi.org/10.1099/mgen.0.000742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtacka J, Wysoc B, Kocuvan A et al (2021) High contamination rates of shoes of veterinarians, veterinary support staff and veterinary students with Clostridioides difficile spores. Transbound Emerg Dis 00:1–9

    Google Scholar 

  • Zidaric V, Zemljic M, Janezic S et al (2008) High diversity of Clostridium difficile genotypes isolated from a single poultry farm producing replacement laying hens. Anaerobe 14:325–327

    Article  CAS  PubMed  Google Scholar 

  • Zidaric V, Beigot S, Lapajne S et al (2010) The occurrence and high diversity of Clostridium difficile genotypes in rivers. Anaerobe 16(4):371–375

    Article  PubMed  Google Scholar 

  • Zidaric V, Pardon B, Dos Vultos T et al (2012) Different antibiotic resistance and sporulation properties within multiclonal Clostridium difficile PCR ribotypes 078, 126, and 033 in a single calf farm. Appl Environ Microbiol 78:8515–8522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zlender T, Golob Z, Rupnik M (2022) Low Clostridioides difficile positivity rate in wild animal shelter in Slovenia. Anaerobe 77:102643

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rodriguez-Diaz, C., Seyboldt, C., Rupnik, M. (2024). Non-human Clostridioides difficile Reservoirs and Sources: Animals, Food, Environment. In: Mastrantonio, P., Rupnik, M. (eds) Updates on Clostridioides difficile in Europe. Advances in Experimental Medicine and Biology(), vol 1435. Springer, Cham. https://doi.org/10.1007/978-3-031-42108-2_15

Download citation

Publish with us

Policies and ethics