Skip to main content

Development and Anatomy of the Human Middle Ear

  • Chapter
  • First Online:
Textbook of Otitis Media

Abstract

The structure of the human middle ear is intimately related to its function in transmitting sound vibrations through to the cochlea. A detailed knowledge of the anatomical relationships between the tympanic membrane, ossicles, muscles and nerves is essential for the diagnosis and surgical treatment of many forms of conductive hearing loss. Improvements in micro-computed tomography are making it easier to visualise this complex region. Understanding middle ear morphology, however, also requires an understanding of its embryology. Although the involvement of the pharyngeal pouches and arches in the formation of the middle ear and its structures has long been recognised, controversies remain and modern developmental biology techniques continue to shed new light on the origins of some of the tissues involved. Differences in middle ear development may also affect the propensity to develop pathologies later in life. One example of this relates to the role of drainage of the air-filled cavity in the aetiology of otitis media. In this chapter, we review what is currently known about middle ear development, after which we provide a comprehensive description of the anatomy of the adult human middle ear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grevellec A, Tucker AS. The pharyngeal pouches and clefts: development, evolution, structure and derivatives. Semin Cell Dev Biol. 2010;21:325–32.

    Article  PubMed  Google Scholar 

  2. Mallo M. Formation of the middle ear: recent progress on the developmental and molecular mechanisms. Dev Biol. 2001;231:410–9.

    Article  PubMed  Google Scholar 

  3. Graham A, Poopalasundaram S, Shone V, Kiecker C. A reappraisal and revision of the numbering of the pharyngeal arches. J Anat. 2019;235:1019–23.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sudler MT. The development of the nose, and of the pharynx and its derivatives in man. Am J Anat. 1902;1:391–416.

    Article  Google Scholar 

  5. Benson MT, Dalen K, Mancuso AA, Kerr HH, Cacciarelli AA, Mafee MF. Congenital anomalies of the branchial apparatus: embryology and pathologic anatomy. Radiographics. 1992;12:943–60.

    Article  PubMed  Google Scholar 

  6. Quinlan R, Martin P, Graham A. The role of actin cables in directing the morphogenesis of the pharyngeal pouches. Development. 2004;131:593–9.

    Article  PubMed  Google Scholar 

  7. van Waegeningh HF, Ebbens FA, van Spronsen E, Oostra R-J. Single origin of the epithelium of the human middle ear. Mech Dev. 2019;158:103556.

    Article  PubMed  Google Scholar 

  8. Burford CM, Mason MJ. Early development of the malleus and incus in humans. J Anat. 2016;229:857–70.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Frazer JE. The second visceral arch and groove in the tubo-tympanic region. J Anat Physiol. 1914;48:391–408.

    PubMed  PubMed Central  Google Scholar 

  10. Kanagasuntheram R. A note on the development of the tubotympanic recess in the human embryo. J Anat. 1967;101:731–41.

    PubMed  PubMed Central  Google Scholar 

  11. Anson BJ, Bast TH, Cauldwell EW. The development of the auditory ossicles, the otic capsule and the extracapsular tissues. Ann Otol Rhinol Laryngol. 1948;57:603–32.

    Article  PubMed  Google Scholar 

  12. Guggenheim P, Clements L, Schlesinger A. The significance and fate of the mesenchyme of the middle ear. Laryngoscope. 1956;66:1303–26.

    Article  PubMed  Google Scholar 

  13. Tucker AS. Major evolutionary transitions and innovations: the tympanic middle ear. Philos Trans Royal Soc B Biol Sci. 2017;372:20150483.

    Article  Google Scholar 

  14. Wittmaack K. Ãœber die normale end die pathologische Pneumatisation des Schlafenbeines einschliesslich ihrer Beziehungen zu den Mittelohrerkrankungen. Jena: Verlag von Gustav Fischer; 1918.

    Google Scholar 

  15. Schwarzbart A. The pneumatization of the temporal bone: a new concept. J Laryngol Otol. 1959;73:45–7.

    Article  PubMed  Google Scholar 

  16. Thompson H, Tucker AS. Dual origin of the epithelium of the mammalian middle ear. Science. 2013;339:1453–6.

    Article  PubMed  Google Scholar 

  17. Akaan-Penttilä E. Middle ear mucosa in newborn infants. A topographical and microanatomical study. Acta Otolaryngol. 1982;93:251–9.

    Article  PubMed  Google Scholar 

  18. Lim DJ. Normal and pathological mucosa of the middle ear and eustachian tube. Clin Otolaryngol Allied Sci. 1979;4:213–32.

    Article  PubMed  Google Scholar 

  19. Sade J. Middle ear mucosa. Arch Otolaryngol. 1966;84:137–43.

    Article  PubMed  Google Scholar 

  20. Piza J, Northrop C, Eavey RD. Embryonic middle ear mesenchyme disappears by redistribution. Laryngoscope. 1998;108:1378–81.

    Article  PubMed  Google Scholar 

  21. Piza JE, Northrop CC, Eavey RD. Neonatal mesenchyme temporal bone study: typical receding pattern versus increase in Potter’s sequence. Laryngoscope. 1996;106:856–64.

    Article  PubMed  Google Scholar 

  22. Nikolic P, Järlebark LE, Billett TE, Thorne PR. Apoptosis in the developing rat cochlea and its related structures. Brain Res Dev Brain Res. 2000;119:75–83.

    Article  PubMed  Google Scholar 

  23. Roberts DS, Miller SA. Apoptosis in cavitation of middle ear space. Anat Rec. 1998;251:286–9.

    Article  PubMed  Google Scholar 

  24. Palva T, Ramsay H. Fate of the mesenchyme in the process of pneumatization. Otol Neurotol. 2002;23:192–9.

    Article  PubMed  Google Scholar 

  25. Presley R. Lizards, mammals and the primitive tetrapod tympanic membrane. Symp Zool Soc Lond. 1984;52:127–52.

    Google Scholar 

  26. Minoux M, Kratochwil CF, Ducret S, Amin S, Kitazawa T, Kurihara H, Bobola N, Vilain N, Rijli FM. Mouse Hoxa2 mutations provide a model for microtia and auricle duplication. Development. 2013;140:4386–97.

    Article  PubMed  Google Scholar 

  27. Ars B. Organogenesis of the middle ear structures. J Laryngol Otol. 1989;103:16–21.

    Article  PubMed  Google Scholar 

  28. Michaels L. Evolution of the epidermoid formation and its role in the development of the middle ear and tympanic membrane during the first trimester. J Otolaryngol. 1988a;17:22–8.

    PubMed  Google Scholar 

  29. Michaels L. Origin of congenital cholesteatoma from a normally occurring epidermoid rest in the developing middle ear. Int J Pediatr Otorhinolaryngol. 1988b;15:51–65.

    Article  PubMed  Google Scholar 

  30. Lee TS, Liang JN, Michaels L, Wright A. The epidermoid formation and its affinity to congenital cholesteatoma. Clin Otolaryngol Allied Sci. 1998;23:449–54.

    Article  PubMed  Google Scholar 

  31. Mallo M, Gridley T. Development of the mammalian ear: coordinate regulation of formation of the tympanic ring and the external acoustic meatus. Development. 1996;122:173–9.

    Article  PubMed  Google Scholar 

  32. Rivera-Pérez JA, Mallo M, Gendron-Maguire M, Gridley T, Behringer RR. Goosecoid is not an essential component of the mouse gastrula organizer but is required for craniofacial and rib development. Development. 1995;121:3005–12.

    Article  PubMed  Google Scholar 

  33. Yamada G, Mansouri A, Torres M, Stuart ET, Blum M, Schultz M, De Robertis EM, Gruss P. Targeted mutation of the murine goosecoid gene results in craniofacial defects and neonatal death. Development. 1995;121:2917–22.

    Article  PubMed  Google Scholar 

  34. Yamada G, Ueno K, Nakamura S, Hanamure Y, Yasui K, Uemura M, Eizuru Y, Mansouri A, Blum M, Sugimura K. Nasal and pharyngeal abnormalities caused by the mouse goosecoid gene mutation. Biochem Biophys Res Commun. 1997;233:161–5.

    Article  PubMed  Google Scholar 

  35. Parry DA, Logan CV, Stegmann AP, Abdelhamed ZA, Calder A, Khan S, Bonthron DT, Clowes V, Sheridan E, Ghali N, Chudley AE, Dobbie A, Stumpel CT, Johnson CA. SAMS, a syndrome of short stature, auditory-canal atresia, mandibular hypoplasia, and skeletal abnormalities is a unique neurocristopathy caused by mutations in Goosecoid. Am J Hum Genet. 2013;93:1135–42.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mallo M, Schrewe H, Martin JF, Olson EN, Ohnemus S. Assembling a functional tympanic membrane: signals from the external acoustic meatus coordinate development of the malleal manubrium. Development. 2000;127:4127–36.

    Article  PubMed  Google Scholar 

  37. Ishimoto S, Ito K, Kondo K, Yamasoba T, Kaga K. The role of the external auditory canal in the development of the malleal manubrium in humans. Arch Otolaryngol Head Neck Surg. 2004;130:913–6.

    Article  PubMed  Google Scholar 

  38. Mayer TE, Brueckmann H, Siegert R, Witt A, Weerda H. High-resolution CT of the temporal bone in dysplasia of the auricle and external auditory canal. AJNR Am J Neuroradiol. 1997;18:53–65.

    PubMed  PubMed Central  Google Scholar 

  39. Adanır SS, Bahşi İ. The giant anatomist, whose value is later understood: Bartolomeo Eustachi. Childs Nerv Syst. 2021;37:1–4.

    Article  PubMed  Google Scholar 

  40. Tos M. Growth of the foetal Eustachian tube and its dimensions. Archiv Fur Klinische Und Experimentelle Ohren- Nasen- Und Kehlkopfheilkunde. 1971;198:177–86.

    Article  PubMed  Google Scholar 

  41. Church MW, Gerkin KP. Hearing disorders in children with fetal alcohol syndrome: findings from case reports. Pediatrics. 1988;82:147–54.

    Article  PubMed  Google Scholar 

  42. Magnuson B, Falk B. Diagnosis and management of eustachian tube malfunction. Otolaryngol Clin N Am. 1984;17:659–71.

    Article  Google Scholar 

  43. Todd NW. Otitis media and eustachian tube caliber. Acta Otolaryngol Suppl. 1983;404:1–17.

    Article  PubMed  Google Scholar 

  44. Swarts JD, Rood SR, Doyle WJ. Fetal development of the auditory tube and paratubal musculature. Cleft Palate J. 1986;23:289–311.

    PubMed  Google Scholar 

  45. Anthwal N, Thompson H. The development of the mammalian outer and middle ear. J Anat. 2016;228:217–32.

    Article  PubMed  Google Scholar 

  46. Tono T, Schachern PA, Morizono T, Paparella MM, Morimitsu T. Developmental anatomy of the supratubal recess in temporal bones from fetuses and children. Am J Otol. 1996;17:99–107.

    PubMed  Google Scholar 

  47. Tamari MJ. Auditory tube and tympanic cavity during embryonal, fetal, and prenatal life; histologic study. AMA Arch Otolaryngol. 1953;57:627–47.

    Article  PubMed  Google Scholar 

  48. Kitajiri M, Sando I, Takahara T. Postnatal development of the eustachian tube and its surrounding structures. Preliminary study. Ann Otol Rhinol Laryngol. 1987;96:191–8.

    Article  PubMed  Google Scholar 

  49. Luntz M, Sadé J. Growth of the eustachian tube lumen with age. Am J Otolaryngol. 1988;9:195–8.

    Article  PubMed  Google Scholar 

  50. Suzuki C, Balaban C, Sando I, Sudo M, Ganbo T, Kitagawa M. Postnatal development of Eustachian tube: a computer-aided 3-D reconstruction and measurement study. Acta Otolaryngol. 1998;118:837–43.

    Article  PubMed  Google Scholar 

  51. Ishijima K, Sando I, Balaban C, Suzuki C, Takasaki K. Length of the eustachian tube and its postnatal development: computer-aided three-dimensional reconstruction and measurement study. Ann Otol Rhinol Laryngol. 2000;109:542–8.

    Article  PubMed  Google Scholar 

  52. Oberascher G, Grobovschek M. The eustachian tube in HR computerized tomography. Imaging in the fetus, newborn infant and infant. HNO. 1987;35:455–61.

    PubMed  Google Scholar 

  53. Takasaki K, Takahashi H, Miyamoto I, Yoshida H, Yamamoto-Fukuda T, Enatsu K, Kumagami H. Measurement of angle and length of the eustachian tube on computed tomography using the multiplanar reconstruction technique. Laryngoscope. 2007;117:1251–4.

    Article  PubMed  Google Scholar 

  54. Dinç AE, Damar M, Uğur MB, Öz II, Eliçora S, Bişkin S, Tutar H. Do the angle and length of the eustachian tube influence the development of chronic otitis media? Laryngoscope. 2015;125:2187–92.

    Article  PubMed  Google Scholar 

  55. De la Cuadra Blanco C, Peces Peña MD, Rodríguez-Vázquez JF, Mérida-Velasco JA, Mérida-Velasco JR. Development of the human tensor veli palatini: specimens measuring 13.6–137 mm greatest length; weeks 6–16 of development. Cells Tissues Organs. 2012;195:392–9.

    Article  PubMed  Google Scholar 

  56. Rodríguez-Vázquez JF, Sakiyama K, Abe H, Amano O, Murakami G. Fetal tendinous connection between the tensor tympani and tensor veli palatini muscles: a single digastric muscle acting for morphogenesis of the cranial base. Anat Record (Hoboken). 2016;299:474–83.

    Article  Google Scholar 

  57. Kishimoto H, Yamada S, Kanahashi T, Yoneyama A, Imai H, Matsuda T, Takeda T, Kawai K, Suzuki S. Three-dimensional imaging of palatal muscles in the human embryo and fetus: development of levator veli palatini and clinical importance of the lesser palatine nerve. Dev Dyn. 2016;245:123–31.

    Article  PubMed  Google Scholar 

  58. Logjes RJ, Bleys RL, Breugem CC. The innervation of the soft palate muscles involved in cleft palate: a review of the literature. Clin Oral Investig. 2016;20:895–901.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fuchs JC, Linden JF, Baldini A, Tucker AS. A defect in early myogenesis causes otitis media in two mouse models of 22q11.2 deletion syndrome. Hum Mol Genet. 2015;24:1869–82.

    Article  PubMed  Google Scholar 

  60. Diogo R, Abdala V, Lonergan N, Wood BA. From fish to modern humans—comparative anatomy, homologies and evolution of the head and neck musculature. J Anat. 2008;213:391–424.

    Article  PubMed  PubMed Central  Google Scholar 

  61. McMyn JK. The anatomy of the salpingo-pharyngeus muscle. J Laryngol Otol. 1940;55:1–22.

    Article  Google Scholar 

  62. Warmbrunn MV, de Bakker BS, Hagoort J, Alefs-de Bakker PB, Oostra R-J. Hitherto unknown detailed muscle anatomy in an 8-week-old embryo. J Anat. 2018;233:243–54.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Gaupp E. Die Reichertsche Theorie (Hammer-, Amboss- und Kieferfrage). Archiv für Anatomie und Entwickelungsgeschichte (suppl). 1913;1912:1–416.

    Google Scholar 

  64. Strickland EM, Hanson JR, Anson BJ. Branchial sources of auditory ossicles in man. I. Literature. Arch Otolaryngol. 1962;76:100–22.

    Article  PubMed  Google Scholar 

  65. Reichert C. Ueber die Visceralbogen der Wirbelthiere im Allgemeinen und deren Metamorphosen bei den Vögeln und Säugethieren. Archiv für Anatomie, Physiologie und Wissenschaftliche Medicin. 1837;1837:120–222.

    Google Scholar 

  66. Wyganowska-Świątkowska M, Przystańska A. The Meckel’s cartilage in human embryonic and early fetal periods. Anat Sci Int. 2011;86:98–107.

    Article  PubMed  Google Scholar 

  67. Hanson JR, Anson BJ. Development of the malleus of the human ear. Illustrated in atlas series. Q Bull Northwest Univ Med Sch. 1962;36:119–37.

    PubMed  PubMed Central  Google Scholar 

  68. Rodríguez-Vázquez JF, Mérida-Velasco JR, Jiménez-Collado J. A study of the os goniale in man. Cells Tissues Organs. 1991;142:188–92.

    Article  Google Scholar 

  69. Tucker AS, Watson RP, Lettice LA, Yamada G, Hill RE. Bapx1 regulates patterning in the middle ear: altered regulatory role in the transition from the proximal jaw during vertebrate evolution. Development. 2004;131:1235–45.

    Article  PubMed  Google Scholar 

  70. Gendron-Maguire M, Mallo M, Zhang M, Gridley T. Hoxa-2 mutant mice exhibit homeotic transformation of skeletal elements derived from cranial neural crest. Cell. 1993;75:1317–31.

    Article  PubMed  Google Scholar 

  71. Rijli FM, Mark M, Lakkaraju S, Dierich A, Dollé P, Chambon P. A homeotic transformation is generated in the rostral branchial region of the head by disruption of Hoxa-2, which acts as a selector gene. Cell. 1993;75:1333–49.

    Article  PubMed  Google Scholar 

  72. Hanson JR, Anson BJ, Strickland EM. Branchial sources of the auditory ossicles in man. II. Observations of embryonic stages from 7 mm to 28 mm (CR length). Arch Otolaryngol. 1962;76:200–15.

    Article  PubMed  Google Scholar 

  73. Louryan S. Le développement des osselets de l’ouie chez l’embryon humain: corrélations avec les données recueillies chez la souris. Bull Assoc Anat. 1993;77:29–32.

    Google Scholar 

  74. Whyte J, Cisneros A, Yus C, Fraile J, Obón J, Vera A. Tympanic ossicles and pharyngeal arches. Anat Histol Embryol. 2009;38:31–3.

    Article  PubMed  Google Scholar 

  75. Harrison MS, Leeming R. Preservation of the stapedius tendon in surgery of the stapes. Br J Audiol. 1971;5:78–84.

    Article  Google Scholar 

  76. Standring S, Ellis H, Healy JC, Johnson D, Williams A, editors. Gray’s anatomy: the anatomical basis of clinical practice. 39th ed. Edinburgh: Elsevier Churchill Livingstone; 2005.

    Google Scholar 

  77. Williams PL, Bannister LH, Berry MM, Collins P, Dyson M, Dussek JE, Ferguson MWJ, editors. Gray’s Anatomy. 38th ed. Edinburgh: Churchill Livingstone; 1995.

    Google Scholar 

  78. Williams PL, Warwick R, Dyson M, Bannister LH, editors. Gray’s anatomy. 37th ed. Edinburgh: Churchill Livingstone; 1989.

    Google Scholar 

  79. Rodríguez-Vázquez JF, Yamamoto M, Abe S, Katori Y, Murakami G. Development of the human incus with special reference to the detachment from the chondrocranium to be transferred into the middle ear. Anat Record (Hoboken). 2018;301:1405–15.

    Article  Google Scholar 

  80. O’Gorman S. Second branchial arch lineages of the middle ear of wild-type and Hoxa2 mutant mice. Dev Dyn. 2005;234:124–31.

    Article  PubMed  Google Scholar 

  81. Mason MJ. Of mice, moles and Guinea pigs: functional morphology of the middle ear in living mammals. Hear Res. 2013;301:4–18.

    Google Scholar 

  82. Louryan S, Lejong M, Choa-Duterre M, Vanmuylder N. Hox-A2 protein expression in mouse embryo middle ear ossicles. Morphologie. 2018;102:243–9.

    Article  PubMed  Google Scholar 

  83. Anson BJ, Cauldwell EW. The developmental anatomy of the human stapes. Ann Otol Rhinol Laryngol. 1942;51:891–904.

    Article  Google Scholar 

  84. Rodríguez-Vázquez JF. Development of the stapes and associated structures in human embryos. J Anat. 2005;207:165–73.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Thompson H, Ohazama A, Sharpe PT, Tucker AS. The origin of the stapes and relationship to the otic capsule and oval window. Dev Dyn. 2012;241:1396–404.

    Article  PubMed  Google Scholar 

  86. Amin S, Tucker AS. Joint formation in the middle ear: lessons from the mouse and guinea pig. Dev Dyn. 2006;235:1326–33.

    Google Scholar 

  87. Anson BJ, Bast TH. The development of the auditory ossicles and associated structures in man. Ann Otol Rhinol Laryngol. 1946;55:467–94.

    PubMed  Google Scholar 

  88. Whyte JR, González L, Cisneros AI, Yus C, Torres A, Sarrat R. Fetal development of the human tympanic ossicular chain articulations. Cells Tissues Organs. 2002;171:241–9.

    Article  PubMed  Google Scholar 

  89. Jahrsdoerfer RA, Aguilar EA, Yeakley JW, Cole RR. Treacher Collins syndrome: an otologic challenge. Ann Otol Rhinol Laryngol. 1989;98:807–12.

    Article  PubMed  Google Scholar 

  90. Phelps PD, Poswillo D, Lloyd GA. The ear deformities in mandibulofacial dysostosis (Treacher Collins syndrome). Clin Otolaryngol Allied Sci. 1981;6:15–28.

    Article  PubMed  Google Scholar 

  91. Rodríguez-Vázquez JF, Yamamoto M, Kim JH, Jin Z-W, Katori Y, Murakami G. The incudopetrosal joint of the human middle ear: a transient morphology in fetuses. J Anat. 2020;237:176–87.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Anson BJ, Bast TH. Development of the incus of the human ear; illustrated in atlas series. Q Bull Northwest Univ Med Sch. 1959;33:110–9.

    PubMed  PubMed Central  Google Scholar 

  93. Yokoyama T, Iino Y, Kakizaki K, Murakami Y. Human temporal bone study on the postnatal ossification process of auditory ossicles. Laryngoscope. 1999;109:927–30.

    Article  PubMed  Google Scholar 

  94. Oesterle F. Über den Feinbau der Gehörknöchelchen und seine Entstehung. Arch Ohren Nasen Kehlkopfheilkd. 1933;135:311–27.

    Article  Google Scholar 

  95. Anson BJ, Winch TR. Vascular channels in the auditory ossicles in man. Ann Otol Rhinol Laryngol. 1974;83:142–58.

    Article  PubMed  Google Scholar 

  96. Michaelides E, Kansal A, Rutter S, Schutt C. The malleus cap: anatomic description of cartilage of the lateral process of the malleus. Am J Otolaryngol. 2018;39:208–11.

    Article  PubMed  Google Scholar 

  97. Proops D, Hawke M, Berger G, MacKay A. The anterior process of the malleus. J Otolaryngol. 1984;13:39–43.

    PubMed  Google Scholar 

  98. Hitier M, Zhang M, Labrousse M, Barbier C, Patron V, Moreau S. Persistent stapedial arteries in human: from phylogeny to surgical consequences. Surg Radiol Anat. 2013;35:883–91.

    Article  PubMed  Google Scholar 

  99. Rodríguez-Vázquez JF, Mérida-Velasco JR, Verdugo-López S. Development of the stapedius muscle and unilateral agenesia of the tendon of the stapedius muscle in a human fetus. Anat Record (Hoboken). 2010;293:25–31.

    Article  Google Scholar 

  100. Rodríguez-Vázquez JF. Development of the stapedius muscle and pyramidal eminence in humans. J Anat. 2009;215:292–9.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Rodríguez-Vázquez JF, Mérida-Velasco JR, Verdugo-López S, Sánchez-Montesinos I, Mérida-Velasco JA. Morphogenesis of the second pharyngeal arch cartilage (Reichert’s cartilage) in human embryos. J Anat. 2006;208:179–89.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Noden DM, Trainor PA. Relations and interactions between cranial mesoderm and neural crest populations. J Anat. 2005;207:575–601.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Anson BJ, Bast TH, Richany SF. The fetal development of the tympanic ring, and related structures in man. Q Bull Northwest Univ Med Sch. 1955;29:21–36.

    PubMed  PubMed Central  Google Scholar 

  104. Rodríguez-Vázquez JF, Murakami G, Verdugo-López S, Abe S-I, Fujimiya M. Closure of the middle ear with special reference to the development of the tegmen tympani of the temporal bone. J Anat. 2011;218:690–8.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bowden RE. Development of the middle and external ear in man. Proc R Soc Med. 1977;70:807–15.

    PubMed  PubMed Central  Google Scholar 

  106. Spector GJ, Ge XX. Development of the hypotympanum in the human fetus and neonate. Ann Otol Rhinol Laryngol Suppl. 1981;90:1–20.

    PubMed  Google Scholar 

  107. Eby TL. Development of the facial recess: implications for cochlear implantation. Laryngoscope. 1996;106:1–7.

    Article  PubMed  Google Scholar 

  108. Anson BJ, Bast TH. Development of the otic capsule of the human ear; illustrated in atlas series. Q Bull Northwest Univ Med Sch. 1958;32:157–72.

    PubMed  PubMed Central  Google Scholar 

  109. Sai X, Ladher RK. Early steps in inner ear development: induction and morphogenesis of the otic placode. Front Pharmacol. 2015;6:19.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Anson BJ, Bast TH. The development of the otic capsule in the region of surgical fenestration. Q Bull Northwest Univ Med School. 1949;23:465–77.

    Google Scholar 

  111. Nemzek WR, Brodie HA, Chong BW, Babcook CJ, Hecht ST, Salamat S, Ellis WG, Seibert JA. Imaging findings of the developing temporal bone in fetal specimens. AJNR Am J Neuroradiol. 1996;17:1467–77.

    PubMed  PubMed Central  Google Scholar 

  112. Leibovitz Z, Egenburg S, Bronshtein M, Shapiro I, Tepper R, Malinger G, Ohel G. Sonographic imaging of fetal tympanic rings. Ultrasound Obstet Gynecol. 2013;42:536–44.

    Article  PubMed  Google Scholar 

  113. Humphrey LT, Scheuer L. Age of closure of the foramen of Huschke: an osteological study. Int J Osteoarchaeol. 2006;16:47–60.

    Article  Google Scholar 

  114. Rivera-Pérez JA, Wakamiya M, Behringer RR. Goosecoid acts cell autonomously in mesenchyme-derived tissues during craniofacial development. Development. 1999;126:3811–21.

    Article  PubMed  Google Scholar 

  115. Mason MJ. Functional morphology of rodent middle ears. In: Hautier L, Cox PG, editors. Evolution of the rodents: advances in phylogeny, functional morphology and development, vol. 5. Cambridge: Cambridge University Press; 2015. p. 373–404.

    Chapter  Google Scholar 

  116. Bast TH, Forester HB. Origin and distribution of air cells in the temporal bone. Arch Otolaryngol. 1939;30:183–205.

    Article  Google Scholar 

  117. Cinamon U. The growth rate and size of the mastoid air cell system and mastoid bone: a review and reference. Eur Arch Otorhinolaryngol. 2009;266:781–6.

    Article  PubMed  Google Scholar 

  118. Halewyck S, Louryan S, Van Der Veken P, Gordts F. Craniofacial embryology and postnatal development of relevant parts of the upper respiratory system. B-ENT. 2012;8(Suppl 19):5–11.

    PubMed  Google Scholar 

  119. Virapongse C, Sarwar M, Bhimani S, Sasaki C, Shapiro R. Computed tomography of temporal bone pneumatization: 1. Normal pattern and morphology. AJR Am J Roentgenol. 1985;145:473–81.

    Article  PubMed  Google Scholar 

  120. Palva T, Palva A. Size of the human mastoid air cell system. Acta Otolaryngol. 1966;62:237–51.

    Article  PubMed  Google Scholar 

  121. Crowe SJ, Polvogt LM. Embryonic tissue in the middle ear and mastoid: report of two cases. Arch Otolaryngol. 1930;12:151–61.

    Article  Google Scholar 

  122. Kasemsuwan L, Schachern P, Paparella MM, Le CT. Residual mesenchyme in temporal bones of children. Laryngoscope. 1996;106:1040–3.

    Article  PubMed  Google Scholar 

  123. Jaisinghani VJ, Paparella MM, Schachern PA, Schneider DS, Le CT. Residual mesenchyme persisting into adulthood. Am J Otolaryngol. 1999;20:363–70.

    Article  PubMed  Google Scholar 

  124. Paparella MM, Shea D, Meyerhoff WL, Goycoolea MV. Silent otitis media. Laryngoscope. 1980;90:1089–98.

    Article  PubMed  Google Scholar 

  125. Sánchez Fernandez JM, Yarnoz J. Study of the mesenchymal clearance factor and its importance in the middle ear pneumatization process in rat and in man. Acta Otolaryngol. 1981;91:557–65.

    Article  PubMed  Google Scholar 

  126. Bilgin H, Kasemsuwan L, Schachern PA, Paparella MM, Le CT. Temporal bone study of Down’s syndrome. Arch Otolaryngol Head Neck Surg. 1996;122:271–5.

    Article  PubMed  Google Scholar 

  127. Harada T, Sando I. Temporal bone histopathologic findings in Down’s syndrome. Arch Otolaryngol. 1981;107:96–103.

    Article  PubMed  Google Scholar 

  128. Zavadskiĭ NV, Zavadskiĭ AV, Ntutumu AN. Controversial issues in the treatment of recurrent purulent otitis media in young children. Vestn Otorinolaringol. 1990;1990:3–7.

    Google Scholar 

  129. Rauchfuss A. Myxomatous remnants in the human middle ear. Histologic studies of their regression and microtopography. Laryngol Rhinol Otol. 1985;64:441–5.

    Article  Google Scholar 

  130. Shewel Y, Bassiouny M, Ebrahim M. Endoscopic assessment of the isthmus tympanicum and tensor tympani fold and their relationship with mastoid pneumatization in chronic otitis media. J Int Adv Otol. 2020;16:227–33.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Dahlberg G, Diamant M. Inheritance of pneumatisation of the mastoid bone. Hereditas. 1945;31:441–56.

    Article  PubMed  Google Scholar 

  132. Lazaridis E, Saunders JC. Can you hear me now? A genetic model of otitis media with effusion. J Clin Investig. 2008;118:471–4.

    PubMed  PubMed Central  Google Scholar 

  133. Bluestone CD, Swarts JD. Human evolutionary history: consequences for the pathogenesis of otitis media. Otolaryngol Head Neck Surg. 2010;143:739–44.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Depreux FF, Darrow K, Conner DA, Eavey RD, Liberman MC, Seidman CE, Seidman JG. Eya4-deficient mice are a model for heritable otitis media. J Clin Investig. 2008;118:651–8.

    PubMed  PubMed Central  Google Scholar 

  135. Aimi K. The tympanic isthmus: its anatomy and clinical significance. Laryngoscope. 1978;88:1067–81.

    Article  PubMed  Google Scholar 

  136. Tóth M, Alpár A, Patonay L, Oláh I. Development and surgical anatomy of the round window niche. Ann Anat. 2006;188:93–101.

    Article  PubMed  Google Scholar 

  137. Franz BK, Clark GM, Bloom DM. Surgical anatomy of the round window with special reference to cochlear implantation. J Laryngol Otol. 1987;101:97–102.

    Article  PubMed  Google Scholar 

  138. Kassem F, Ophir D, Bernheim J, Berger G. Morphology of the human tympanic membrane annulus. Otolaryngol Head Neck Surg. 2010;142:682–7.

    Article  PubMed  Google Scholar 

  139. Decraemer WF, Dirckx JJ, Funnell WR. Shape and derived geometrical parameters of the adult, human tympanic membrane measured with a phase-shift moiré interferometer. Hear Res. 1991;51:107–21.

    Article  PubMed  Google Scholar 

  140. Djupesland G. Middle ear muscle reflexes elicited by acoustic and nonacoustic stimulation. Acta Otolaryngol Suppl. 1964;188:287–92.

    Article  Google Scholar 

  141. Aritomo H, Goode RL, Gonzalez J. The role of pars flaccida in human middle ear sound transmission. Otolaryngol Head Neck Surg. 1988;98:310–4.

    Article  PubMed  Google Scholar 

  142. Ishijima K, Sando I, Balaban CD, Miura M, Takasaki K. Functional anatomy of levator veli palatini muscle and tensor veli palatini muscle in association with eustachian tube cartilage. Ann Otol Rhinol Laryngol. 2002;111:530–6.

    Article  PubMed  Google Scholar 

  143. Smith ME, Scoffings DJ, Tysome JR. Imaging of the Eustachian tube and its function: a systematic review. Neuroradiology. 2016;58:543–56.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Sudo M, Sando I, Ikui A, Suzuki C. Narrowest (isthmus) portion of Eustachian tube: a computer-aided three-dimensional reconstruction and measurement study. Ann Otol Rhinol Laryngol. 1997;106:583–8.

    Article  PubMed  Google Scholar 

  145. Hiraide F, Inouye T. The fine surface view of the human adult eustachian tube. J Laryngol Otol. 1983;97:149–57.

    Article  PubMed  Google Scholar 

  146. Janzen-Senn I, Schuon RA, Tavassol F, Lenarz T, Paasche G. Dimensions and position of the Eustachian tube in humans. PLoS One. 2020;15:e0232655.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Liu J, Pinheiro-Neto CD, Fernandez-Miranda JC, Snyderman CH, Gardner PA, Hirsch BE, Wang E. Eustachian tube and internal carotid artery in skull base surgery: an anatomical study. Laryngoscope. 2014;124:2655–64.

    Article  PubMed  Google Scholar 

  148. Bluestone CD, Doyle WJ. Anatomy and physiology of eustachian tube and middle ear related to otitis media. J Allergy Clin Immunol. 1988;81:997–1003.

    Article  PubMed  Google Scholar 

  149. Matsune S, Sando I, Takahashi H. Elastin at the hinge portion of the eustachian tube cartilage in specimens from normal subjects and those with cleft palate. Ann Otol Rhinol Laryngol. 1992;101:163–7.

    Article  PubMed  Google Scholar 

  150. Aoki H, Sando I, Takahashi H. Anatomic relationships between Ostmann’s fatty tissue and eustachian tube. Ann Otol Rhinol Laryngol. 1994;103:211–4.

    Article  PubMed  Google Scholar 

  151. Alper CM, Swarts JD, Singla A, Banks J, Doyle WJ. Relationship between the electromyographic activity of the paratubal muscles and eustachian tube opening assessed by sonotubometry and videoendoscopy. Arch Otolaryngol Head Neck Surg. 2012;138:741–6.

    Article  PubMed  Google Scholar 

  152. Rood SR, Doyle WJ. Morphology of tensor veli palatini, tensor tympani, and dilatator tubae muscles. Ann Otol Rhinol Laryngol. 1978;87:202–10.

    Article  PubMed  Google Scholar 

  153. Dickson DR, Dickson WM. Velopharyngeal anatomy. J Speech Hear Res. 1972;15:372–81.

    Article  PubMed  Google Scholar 

  154. Chien HF, Sanchez TG, Sennes LU, Barbosa ER. Endonasal approach of salpingopharyngeus muscle for the treatment of ear click related to palatal tremor. Parkinsonism Relat Disord. 2007;13:254–6.

    Article  PubMed  Google Scholar 

  155. Akita K, Sakaguchi-Kuma T, Fukino K, Ono T. Masticatory muscles and branches of mandibular nerve: positional relationships between various muscle bundles and their innervating branches. Anat Record (Hoboken). 2019;302:609–19.

    Article  Google Scholar 

  156. McDonald MH, Hoffman MR, Gentry LR, Jiang JJ. New insights into mechanism of Eustachian tube ventilation based on cine computed tomography images. Eur Arch Otorhinolaryngol. 2012;269:1901–7.

    Article  PubMed  Google Scholar 

  157. Manoharan SM, Gray R, Hamilton J, Mason MJ. Internal vascular channel architecture in human auditory ossicles. J Anat. 2022;241:245–58.

    Article  PubMed  PubMed Central  Google Scholar 

  158. Kamrava B, Roehm PC. Systematic review of ossicular chain anatomy: strategic planning for development of novel middle ear prostheses. Otolaryngol Head Neck Surg. 2017;157:190–200.

    Article  PubMed  Google Scholar 

  159. De Greef D, Goyens J, Pintelon I, Bogers JP, Van Rompaey V, Hamans E, Van de Heyning P, Dirckx JJJ. On the connection between the tympanic membrane and the malleus. Hear Res. 2016;340:50–9.

    Article  PubMed  Google Scholar 

  160. Gan RZ, Sun Q, Dyer RK, Chang K-H, Dormer KJ. Three-dimensional modeling of middle ear biomechanics and its applications. Otol Neurotol. 2002;23:271–80.

    Article  PubMed  Google Scholar 

  161. Sim JH, Puria S. Soft tissue morphometry of the malleus–Incus complex from micro-CT imaging. J Assoc Res Otolaryngol. 2008;9:5.

    Article  PubMed  PubMed Central  Google Scholar 

  162. Graboyes EM, Hullar TE, Chole RA. The lenticular process of the incus. Otol Neurotol. 2011;32:1600–4.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Chien W, Northrop C, Levine S, Pilch BZ, Peake WT, Rosowski JJ, Merchant SN. Anatomy of the distal incus in humans. J Assoc Res Otolaryngol. 2009;10:485–96.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Enghag S, Strömbäck K, Li H, Rohani SA, Ladak HM, Rask-Andersen H, Agrawal S. Incus necrosis and blood supply: a micro-CT and synchrotron imaging study. Otol Neurotol. 2019;40:e713–22.

    Article  PubMed  Google Scholar 

  165. Bolz EA, Lim DJ. Morphology of the stapediovestibular joint. Acta Otolaryngol. 1972;73:10–7.

    Article  PubMed  Google Scholar 

  166. Sim JH, Röösli C, Chatzimichalis M, Eiber A, Huber AM. Characterization of stapes anatomy: investigation of human and guinea pig. J Assoc Res Otolaryngol. 2013;14:159–73.

    Google Scholar 

  167. Guggenheim P. Mesenchyme in the middle ear. Laryngoscope. 1971;81:1665–70.

    Article  PubMed  Google Scholar 

  168. Marquet J. The incudo-malleal joint. J Laryngol Otol. 1981;95:543–65.

    Article  PubMed  Google Scholar 

  169. Mason MJ, Farr MRB. Flexibility within the middle ears of vertebrates. J Laryngol Otol. 2013;127:2–14.

    Article  PubMed  Google Scholar 

  170. Kierner AC, Mayer R, v Kirschhofer, K. Do the tensor tympani and tensor veli palatini muscles of man form a functional unit? A histochemical investigation of their putative connections. Hear Res. 2002;165:48–52.

    Article  PubMed  Google Scholar 

  171. Ramirez Aristeguieta LM, Ballesteros Acuña LE, Sandoval Ortiz GP. Tensor veli palatini and tensor tympani muscles: anatomical, functional and symptomatic links. Acta Otorrinolaringol Espanola. 2010;61:26–33.

    Article  Google Scholar 

  172. Howell P. Are two muscles needed for the normal functioning of the mammalian middle ear? Acta Otolaryngol. 1984;98:204–7.

    Article  PubMed  Google Scholar 

  173. Jones SE, Mason MJ, Sunkaraneni VS, Baguley DM. The effect of auditory stimulation on the tensor tympani in patients following stapedectomy. Acta Otolaryngol. 2008;128:250–4.

    Article  PubMed  Google Scholar 

  174. Pang XD, Peake WT. How do contractions of the stapedius muscle alter the acoustic properties of the ear? In: Allen JB, Hall JL, Hubbard A, Neely ST, Tubis A, editors. Peripheral auditory mechanisms. New York: Springer; 1986. p. 36–43.

    Chapter  Google Scholar 

  175. Mukerji S, Windsor AM, Lee DJ. Auditory brainstem circuits that mediate the middle ear muscle reflex. Trends Amplif. 2010;14:170–91.

    Article  PubMed  PubMed Central  Google Scholar 

  176. McManus LJ, Dawes PJ, Stringer MD. Clinical anatomy of the chorda tympani: a systematic review. J Laryngol Otol. 2011;125:1101–8.

    Article  PubMed  Google Scholar 

  177. Monkhouse WS. The anatomy of the facial nerve. Ear Nose Throat J. 1990;69:677–83, 686–7.

    PubMed  Google Scholar 

  178. Shin KJ, Gil YC, Lee JY, Kim JN, Song WC, Koh KS. Three-dimensional study of the facial canal using microcomputed tomography for improved anatomical comprehension. Anat Record (Hoboken). 2014;297:1808–16.

    Article  Google Scholar 

  179. Ito J, Oyagi S, Honjo I. Autonomic innervations in the middle ear and pharynx. Acta Otolaryngol Suppl. 1993;506:90–3.

    Article  PubMed  Google Scholar 

  180. Eden AR, Gannon PJ. Neural control of middle ear aeration. Arch Otolaryngol Head Neck Surg. 1987;113:133–7.

    Article  PubMed  Google Scholar 

  181. Songu M, Aslan A, Unlu HH, Celik O. Neural control of eustachian tube function. Laryngoscope. 2009;119:1198–202.

    Article  PubMed  Google Scholar 

  182. Kanzara T, Hall A, Virk JS, Leung B, Singh A. Clinical anatomy of the tympanic nerve: a review. World J Otorhinolaryngol. 2014;4:17–22.

    Article  Google Scholar 

  183. Ross JA. The function of the tympanic plexus as related to Frey’s syndrome. Laryngoscope. 1970;80:1816–33.

    Article  PubMed  Google Scholar 

  184. Padurariu S, Röösli C, Røge R, Stensballe A, Vyberg M, Huber A, Gaihede M. On the functional compartmentalization of the normal middle ear. Morpho-histological modelling parameters of its mucosa. Hear Res. 2019;378:176–84.

    Article  PubMed  Google Scholar 

  185. Cros O, Knutsson H, Andersson M, Pawels E, Borga M, Gaihede M. Determination of the mastoid surface area and volume based on micro-CT scanning of human temporal bones. Geometrical parameters depend on scanning resolutions. Hear Res. 2016;340:127–34.

    Article  PubMed  Google Scholar 

  186. Singh A, Thakur R, Kumar R, Verma H, Irugu DVK. Grading of the position of the mastoid tegmen in human temporal bones—a surgeon’s perspective. J Int Adv Otol. 2020;16:63–6.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Louis RG Jr, Loukas M, Wartmann CT, Tubbs RS, Apaydin N, Gupta AA, Spentzouris G, Ysique JR. Clinical anatomy of the mastoid and occipital emissary veins in a large series. Surg Radiol Anat. 2009;31:139–44.

    Article  PubMed  Google Scholar 

  188. Ozer E, Bayazit YA, Kara C, Mumbuç S, Kanlikama M, Gümüşburun E. Körner’s septum (petrosquamosal lamina) and chronic ear disease. Surg Radiol Anat. 2004;26:118–21.

    Article  PubMed  Google Scholar 

  189. MacEwen W. Pyogenic and infective diseases of the brain and spinal cord: meningitis, abscess of brain, infective sinus thrombosis. Glasgow Med J. 1893;41:57–63.

    Google Scholar 

  190. Doyle WJ. The mastoid as a functional rate-limiter of middle ear pressure change. Int J Pediatr Otorhinolaryngol. 2007;71:393–402.

    Article  PubMed  Google Scholar 

  191. Gaihede M, Dirckx JJ, Jacobsen H, Aernouts J, Søvsø M, Tveterås K. Middle ear pressure regulation—complementary active actions of the mastoid and the Eustachian tube. Otol Neurotol. 2010;31:603–11.

    Article  PubMed  Google Scholar 

  192. Cinamon U, Sadé J. Mastoid and tympanic membrane as pressure buffers: a quantitative study in a middle ear cleft model. Otol Neurotol. 2003;24:839–42.

    Article  PubMed  Google Scholar 

  193. Takahashi H, Honjo I, Naito Y, Miura M, Tanabe M, Hasebe S, Toda H. Gas exchange function through the mastoid mucosa in ears after surgery. Laryngoscope. 1997;107:1117–21.

    Article  PubMed  Google Scholar 

  194. Belyea J, Wickens B, Bance M. Middle ear ventilation status postoperatively after translabyrinthine resection of vestibular schwannoma with mastoid obliteration and Eustachian tube occlusion: is the Eustachian tube enough to ventilate the middle ear without the mastoid air cell system? J Otolaryngol Head Neck Surg. 2016;45:44.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Swarts JD, Cullen Doyle BM, Alper CM, Doyle WJ. Surface area-volume relationships for the mastoid air cell system and tympanum in adult humans: implications for mastoid function. Acta Otolaryngol. 2010;130:1230–6.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Stepp CE, Voss SE. Acoustics of the human middle-ear air space. J Acoust Soc Am. 2005;118:861–71.

    Article  PubMed  Google Scholar 

  197. Magnuson B. Functions of the mastoid cell system: auto-regulation of temperature and gas pressure. J Laryngol Otol. 2003;117:99–103.

    Article  PubMed  Google Scholar 

  198. Ilea A, Butnaru A, Sfrângeu SA, Hedeşiu M, Dudescu CM, Berce P, Chezan H, Hurubeanu L, Trombiţaş VE, Câmpian RS, Albu S. Role of mastoid pneumatization in temporal bone fractures. AJNR Am J Neuroradiol. 2014;35:1398–404.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Proetz AW. Observations upon the formation and function of the accessory nasal sinuses and the mastoid cells. Ann Otol Rhinol Laryngol. 1922;31:1083–99.

    Article  Google Scholar 

  200. Alicandri-Ciufelli M, Gioacchini FM, Marchioni D, Genovese E, Monzani D, Presutti L. Mastoid: a vestigial function in humans? Med Hypotheses. 2012;78:364–6.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Temporal bone specimens from which CT reconstructions were made were obtained from the Human Anatomy Centre, Department of Physiology, Development & Neuroscience, University of Cambridge. Prior to decease, all donors had provided consent for the use of their bodies for anatomical research, in compliance with the Human Tissue Act 2004. The authors thank Will Ashley-Fenn, Darren Broadhurst, Sue Jones, Prabhvir Marway and Maria Wright for preparation of the temporal bone specimens that we used and Cecilia Brassett and Richard Lloyd for their help with project logistics and permissions. CT scans were conducted at the Cambridge Biotomography Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Mason .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Burford, C.M., Cornwall, H.L., Farr, M.R.B., Santoni, C.M., Mason, M.J. (2023). Development and Anatomy of the Human Middle Ear. In: Goycoolea, M.V., Selaimen da Costa, S., de Souza, C., Paparella, M.M. (eds) Textbook of Otitis Media. Springer, Cham. https://doi.org/10.1007/978-3-031-40949-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-40949-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-40948-6

  • Online ISBN: 978-3-031-40949-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics