Skip to main content

Pollutant Dispersion Simulation by Means of a Stochastic Particle Model and a Dynamic Gaussian Plume Model

  • Conference paper
  • First Online:
Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications (SimStat 2019)

Part of the book series: Contributions to Statistics ((CONTRIB.STAT.))

Included in the following conference series:

  • 101 Accesses

Abstract

The pollutant dispersion models of this work fall into two classes: physical and statistical. We propose a large-scale physical particle dispersion model and a dynamic version of the well-known Gaussian plume model, based on statistical filters. Both models are based on wind measurements, wind interpolations, and mass corrections of certain wind stations installed in an alpine valley in Carinthia/Austria. Every 10 minutes the wind field is updated, and the dispersion of the pollutant is calculated. Vegetations like forest and grassland are fully considered. The dispersion models are used to predict pollutant concentrations resulting from the emissions of a cement plant. Both models are compared to each other and give almost equivalent results. The great advantage of the statistical model is that it does not scale like the particle model with the number of emitters, but its computational burden is constant, no matter how many emitters are included in the model. To test and validate these models, we developed the R-package PDC using the CUDA framework for GPU implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://developer.nvidia.com/embedded/buy/jetson-tx2-devkit.

References

  1. Abdel-Rahman, A.A.: On the Atmospheric Dispersion and Gaussian Plume Model. In: WWAI08, 2nd International Conference on Waste Managemant, Water Pollution, Air Pollution, Indoor Climate, Corfu, pp. 31–39 (2008)

    Google Scholar 

  2. Amert, T., Otterness, N., Yang, M., Anderson, J. H.: GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed (2017). https://cs.unc.edu/~tamert/papers/rtss17.pdf

  3. Bellasio, R., Bianconi, R., Mosca, S., Zannetti, P.: Formulation of the Lagrangian particle model LAPMOD and its evaluation against Kincaid SF6 and SO2 datasets. Atmos. Environ. 163, 87–98 (2017)

    Article  Google Scholar 

  4. Bellasio, R., Bianconi, R., Mosca, S., Zannetti, P.: Incorporation of numerical plume rise algorithms in the lagrangian particle model lapmod and validation against the indianapolis and kincaid datasets. Atmosphere 9, 404–427 (2018)

    Article  Google Scholar 

  5. Carson, J.E., Moses, H.: The validity of several plume rise formulas. J. Air Pollut. Control Assoc. (1969). https://doi.org/10.1080/00022470.1969.10469350:862--866

  6. Carstoiu, D., Oltean, V.E., Gorghiu, G., Olteanu, A., Cernian, A.: Approaches in wind field modeling and air quality monitoring systems. Bull. UASVM 65(2), 549–554 (2008)

    Google Scholar 

  7. Caulfield, B.: Surrounded by AI devices that do everything from flying to farming, NVIDIA launches Jetson TX2. Technical report, NVIDIA (2017)

    Google Scholar 

  8. CERC: ADMS-5 (2013). http://www.cerc.co.uk/environmental-software/ADMS-model.html

  9. Chow, P.-L.: Stochastic Partial Differential Equations. Chapman & Hall, Boca Raton (2007)

    Book  MATH  Google Scholar 

  10. Debian – About. https://www.debian.org/intro/about. Debian. Archived https://web.archive.org/web/19990117033720/https://www.debian.org/intro/about from the original on January 17, 1999. Retrieved June 12, 2017 Debian. Archived (2017). https://web.archive.org/web/19990117033720/https://www.debian.org/intro/about

  11. de Goede, H., Chen, X., Rousseau, L., Hjelm, N., Dickens, C.: LIBUSB – A cross-platform user library to access USB devices (2017). http://libusb.info/

  12. de Nevers, N.: Air Pollution Control Engineering. Waveland Press, Inc., Long Grove (2017)

    Google Scholar 

  13. de Visscher, A.: Air Dispersion Modeling, Foundations and Applications. Wiley, Hoboken (2014)

    Google Scholar 

  14. EENV: Air pollution control EENV 4313 (2016). http://site.iugaza.edu.ps/rkhatib/files/2016/09/Air-Pollution-Chapter-6.pdf

  15. El-Wahab, A., Essa, K., Elsman, H., Soliman, A., Elgmmal, S., Wheida, A.: Derivation of the Gaussian plume model in three dimensions. Mausam 65, 83–92 (2014)

    Article  Google Scholar 

  16. Enviroware: Lapmod (2017). https://www.enviroware.com/lapmod/

  17. Holland, J.Z.: A meteorological survey of the Oak Ridge area. USAEC Report ORO-99, Oak Ridge National Laboratory, pp. 554–559

    Google Scholar 

  18. Homicz, G.F.: Three-dimensional wind field modeling: a review. SAND Report (2002)

    Google Scholar 

  19. Lemons, D.S., Gythiel, A.: Paul Langevin’s 1908 paper “On the Theory of Brownian Motion”. Am. J. Phys. 36(5), 823–832 (1997)

    Google Scholar 

  20. Monin, A., Obukhov, A.: Basic turbulent mixing laws in the atmospheric surface layer. Tr. Geofiz. Inst. Akad. Nauk SSSR 24, 163–187 (1954)

    Google Scholar 

  21. NVIDIA: Cuda Toolkit (2017). https://developer.nvidia.com/cuda-toolkit

  22. Olesen, H.: Model Validation Kit (2005). http://www.harmo.org/kit/Download/Kit_UsersGuide.pdf

  23. Ooms, J., James, D., DebRoy, S., Wickham, H., Horner, J.: RMySQL: Database Interface and ’MySQL’ Driver for R. R package version 0.10.11. (2017)

    Google Scholar 

  24. OpenStreetMap contributors: (2017) Planet dump retrieved from https://planet.osm.org. https://www.openstreetmap.org

  25. OSGeo: GRASS GIS Geographic Resources Analysis Support System (2017). https://grass.osgeo.org/

  26. Ozerov, A.: Freetz Weather für WH1080/WH3080 (2011). http://baublog.ozerov.de/wetterstation/freetz-weather-datenlogger-fuer-wh1080-wh3080/

  27. Pasquill, F.: The estimation of the dispersion of windborne material. Meteorol. Mag. 90, 33–49 (1961)

    Google Scholar 

  28. RaspberryPi.Org: Raspberry PI3 Model B (2018)

    Google Scholar 

  29. R Core Team: R: A Language and Environment for Statistical Computing (2017). R Foundation for Statistical Computing, Vienna

    Google Scholar 

  30. Ross, D., Smith, I., Manins, P., Fox, D.: Diagnostic wind field modeling for complex terrain: model development and testing. J. Appl. Meteorol. 27, 785–796 (1988)

    Article  Google Scholar 

  31. Seinfeld, J.H.: Atmospheric Chemistry and Physics of Air Pollution, chapter 14, pp. 561–586. Wiley, Hoboken (1986)

    Google Scholar 

  32. Soetaert, K.: plot3D: Plotting Multi-Dimensional Data (2016). R package version 1.1.

    Google Scholar 

  33. Sygitowicz, C.: Mathew: A Mass-Consistent Wind Field Model (1978). PhD thesis, Univerity of California

    Google Scholar 

  34. Raspberry Pi Foundation - About Us. https://www.raspberrypi.org/about/.Raspberrypi.org. Retrieved 23 August 2020

  35. US-EPA: Scipuff (2000). https://www.sage-mgt.net/services-and-solutions/modeling-and-simulation/scipuff-dispersion-model.

  36. US-EPA: Aermod (2006). https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models#aermod.

  37. US-EPA: Calpuff (2006). https://www.epa.gov/scram/air-quality-dispersion-modeling-preferred-and-recommended-models#calpuff.

  38. VDI (2009). VDI-Richtlinien: Atmospheric dispersion models. Technical report, Verein deutscher Ingenieure

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Arbeiter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arbeiter, M., Gebhardt, A., Spöck, G. (2023). Pollutant Dispersion Simulation by Means of a Stochastic Particle Model and a Dynamic Gaussian Plume Model. In: Pilz, J., Melas, V.B., Bathke, A. (eds) Statistical Modeling and Simulation for Experimental Design and Machine Learning Applications. SimStat 2019. Contributions to Statistics. Springer, Cham. https://doi.org/10.1007/978-3-031-40055-1_3

Download citation

Publish with us

Policies and ethics