Skip to main content

Targeted Drug Delivery to the CNS: Beyond the Intrathecal Space

  • Chapter
  • First Online:
Neuraxial Therapeutics

Abstract

The promise of direct delivery of medications to the brain to help patients with severe central nervous system (CNS) diseases has made some progress in the last few years but has yet to be fully realized. For targeted brain delivery, a drug can be administered into the cerebrospinal fluid or directly into the brain parenchyma. With either route of administration, the use of targeted drug delivery to the brain seeks to gain the same attendant advantages that have been recognized with intrathecal (IT) drug delivery, particularly to bypass or circumvent the blood-brain barrier and infuse a drug in direct proximity to target regions within the brain. Ideally, the optimal combination of the right drug, device, and delivery regimen will yield a distribution of the drug (both spatially and temporally) within the brain at an appropriate dose that matches the therapeutic needs of the patient and yields a therapy that provides a degree of clinical benefit that exceeds the inherent risks of this approach. This chapter provides a historical perspective on targeted drug delivery to the brain, identifies practical considerations for drug-device combination development, and identifies indications with the most promise for therapeutic success.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gooch CL, Pracht E, Borenstein AR. The burden of neurological disease in the United States: a summary report and call to action. Ann Neurol. 2017;81(4):479–84.

    Article  PubMed  Google Scholar 

  2. Alzheimer’s Association. 2018 Alzheimer’s disease facts and figures. 2018(14):367–429.

    Google Scholar 

  3. Prince M, Comas-Herrera A, Knapp M, Guerchet M, Karagiannidou M. World Alzheimer report 2016: improving healthcare for people living with dementia: coverage, quality and costs now and in the future. London; 2016.

    Google Scholar 

  4. World Health Organization Report. Neurological disorders public health challenges. 2006.

    Google Scholar 

  5. Ereshefsky L, Evans R, Rohit S, Williamson D, English BA. Venturing into a new era of CNS drug development to improve success. 2015.

    Google Scholar 

  6. Kordower JH, Palfi S, Chen EY, Ma SY, Sendera T, Cochran EJ, et al. Clinicopathological findings following intraventricular glial-derived neurotrophic factor treatment in a patient with Parkinson’s disease. Ann Neurol. 1999;46(3):419–24.

    Article  CAS  PubMed  Google Scholar 

  7. Salvatore MF, Ai Y, Fischer B, Zhang AM, Grondin RC, Zhang Z, et al. Point source concentration of GDNF may explain failure of phase II clinical trial. Exp Neurol. 2006;202(2):497–505.

    Article  CAS  PubMed  Google Scholar 

  8. Sampson JH, Archer G, Pedain C, Wembacher-Schroder E, Westphal M, Kunwar S, et al. Poor drug distribution as a possible explanation for the results of the PRECISE trial. J Neurosurg. 2010;113(2):301–9.

    Article  PubMed  Google Scholar 

  9. Alperin N, Bagci AM, Lee SH, Lam BL. Automated quantitation of spinal CSF volume and measurement of craniospinal CSF redistribution following lumbar withdrawal in idiopathic intracranial hypertension. AJNR Am J Neuroradiol. 2016;37(10):1957–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hodel J, Lebret A, Petit E, Leclerc X, Zins M, Vignaud A, et al. Imaging of the entire cerebrospinal fluid volume with a multistation 3D SPACE MR sequence: feasibility study in patients with hydrocephalus. Eur Radiol. 2013;23(6):1450–8.

    Article  PubMed  Google Scholar 

  11. Sakka L, Coll G, Chazal J. Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 2011;128(6):309–16.

    Article  CAS  PubMed  Google Scholar 

  12. Gupta S, Soellinger M, Boesiger P, Poulikakos D, Kurtcuoglu V. Three-dimensional computational modeling of subject-specific cerebrospinal fluid flow in the subarachnoid space. J Biomech Eng. 2009;131(2):021010.

    Article  PubMed  Google Scholar 

  13. Gupta S, Soellinger M, Grzybowski DM, Boesiger P, Biddiscombe J, Poulikakos D, et al. Cerebrospinal fluid dynamics in the human cranial subarachnoid space: an overlooked mediator of cerebral disease. I. Computational model. J R Soc Interface. 2010;7(49):1195–204.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hladky SB, Barrand MA. Mechanisms of fluid movement into, through and out of the brain: evaluation of the evidence. Fluids Barriers CNS. 2014;11(1):26.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Henry-Feugeas MC, Idy-Peretti I, Blanchet B, Hassine D, Zannoli G, Schouman-Claeys E. Temporal and spatial assessment of normal cerebrospinal fluid dynamics with MR imaging. Magn Reson Imaging. 1993;11(8):1107–18.

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Beckett A, Verma A, Feinberg DA. Dynamics of respiratory and cardiac CSF motion revealed with real-time simultaneous multi-slice EPI velocity phase contrast imaging. Neuroimage. 2015;122:281–7.

    Article  PubMed  Google Scholar 

  17. Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009;117(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  18. Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci. 2013;14(4):265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Basbaum AI, Fields HL. Endogenous pain control mechanisms: review and hypothesis. Ann Neurol. 1978;4(5):451–62.

    Article  CAS  PubMed  Google Scholar 

  20. Tangen KM, Hsu Y, Zhu DC, Linninger AA. CNS wide simulation of flow resistance and drug transport due to spinal microanatomy. J Biomech. 2015;48(10):2144–54.

    Article  PubMed  Google Scholar 

  21. Heidari Pahlavian S, Yiallourou T, Tubbs RS, Bunck AC, Loth F, Goodin M, et al. The impact of spinal cord nerve roots and denticulate ligaments on cerebrospinal fluid dynamics in the cervical spine. PLoS One. 2014;9(4):e91888.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Whish S, Dziegielewska KM, Mollgard K, Noor NM, Liddelow SA, Habgood MD, et al. The inner CSF-brain barrier: developmentally controlled access to the brain via intercellular junctions. Front Neurosci. 2015;9:16.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Siyahhan B, Knobloch V, de Zelicourt D, Asgari M, Schmid Daners M, Poulikakos D, et al. Flow induced by ependymal cilia dominates near-wall cerebrospinal fluid dynamics in the lateral ventricles. J R Soc Interface. 2014;11(94):20131189.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Calias P, Papisov M, Pan J, Savioli N, Belov V, Huang Y, et al. CNS penetration of intrathecal-lumbar idursulfase in the monkey, dog and mouse: implications for neurological outcomes of lysosomal storage disorder. PLoS One. 2012;7(1):e30341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ichimura T, Fraser PA, Cserr HF. Distribution of extracellular tracers in perivascular spaces of the rat brain. Brain Res. 1991;545(1–2):103–13.

    Article  CAS  PubMed  Google Scholar 

  26. Miyanohara A, Kamizato K, Juhas S, Juhasova J, Navarro M, Marsala S, et al. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs. Mol Ther Methods Clin Dev. 2016;3:16046.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA. Evidence for a ‘paravascular’ fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 1985;326(1):47–63.

    Article  CAS  PubMed  Google Scholar 

  28. Samaranch L, Salegio EA, San Sebastian W, Kells AP, Bringas JR, Forsayeth J, et al. Strong cortical and spinal cord transduction after AAV7 and AAV9 delivery into the cerebrospinal fluid of nonhuman primates. Hum Gene Ther. 2013;24(5):526–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Smith AJ, Yao X, Dix JA, Jin BJ, Verkman AS. Test of the ‘glymphatic’ hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife. 2017;6:e27679.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Green F, Samaranch L, Zhang HS, Manning-Bog A, Meyer K, Forsayeth J, et al. Axonal transport of AAV9 in nonhuman primate brain. Gene Ther. 2016;23(6):520–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mufson EJ, Kroin JS, Sendera TJ, Sobreviela T. Distribution and retrograde transport of trophic factors in the central nervous system: functional implications for the treatment of neurodegenerative diseases. Prog Neurobiol. 1999;57(4):451–84.

    Article  CAS  PubMed  Google Scholar 

  32. Salegio EA, Samaranch L, Kells AP, Mittermeyer G, San Sebastian W, Zhou S, et al. Axonal transport of adeno-associated viral vectors is serotype-dependent. Gene Ther. 2013;20(3):348–52.

    Article  CAS  PubMed  Google Scholar 

  33. Borges LF, Elliott PJ, Gill R, Iversen SD, Iversen LL. Selective extraction of small and large molecules from the cerebrospinal fluid by Purkinje neurons. Science. 1985;228(4697):346–8.

    Article  CAS  PubMed  Google Scholar 

  34. Markmann S, Christie-Reid JJ, Rosenberg JB, De BP, Kaminsky SM, Crystal RG, et al. Attenuation of the Niemann-Pick type C2 disease phenotype by intracisternal administration of an AAVrh.10 vector expressing Npc2. Exp Neurol. 2018;306:22–33.

    Article  CAS  PubMed  Google Scholar 

  35. Haurigot V, Marco S, Ribera A, Garcia M, Ruzo A, Villacampa P, et al. Whole body correction of mucopolysaccharidosis IIIA by intracerebrospinal fluid gene therapy. J Clin Invest. 2013;123(8):3254–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ommaya AK. Subcutaneous reservoir and pump for sterile access to ventricular cerebrospinal fluid. Lancet. 1963;2(7315):983–4.

    Article  CAS  PubMed  Google Scholar 

  37. Rickham PP. A ventriculostomy reservoir. Br Med J. 1964;2(5402):173.

    CAS  PubMed  Google Scholar 

  38. Nutt JG, Burchiel KJ, Comella CL, Jankovic J, Lang AE, Laws ER Jr, et al. Randomized, double-blind trial of glial cell line-derived neurotrophic factor (GDNF) in PD. Neurology. 2003;60(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  39. Samaranch L, Bringas J, Pivirotto P, Sebastian WS, Forsayeth J, Bankiewicz K. Cerebellomedullary cistern delivery for AAV-based gene therapy: a technical note for nonhuman primates. Hum Gene Ther Methods. 2016;27(1):13–6.

    Article  CAS  PubMed  Google Scholar 

  40. Keane JR. Cisternal puncture complications. Treatment of coccidioidal meningitis with amphotericin B. Calif Med. 1973;119(3):10–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sevin C, Deiva K. Clinical trials for gene therapy in lysosomal diseases with CNS involvement. Front Mol Biosci. 2021;8:624988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cushing H, Sladen FJ. Obstructive hydrocephalus following cerebrospinal meningitis, with intraventricular injection of antimeningitis serum (Flexner). J Exp Med. 1908;10(4):548–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Henderson WR, Wilson WC. Intraventricular injection of acetylcholine and serine in man. Q J Exp Phys. 1936;26:83–95.

    Article  CAS  Google Scholar 

  44. Obrador S. Actions of certain drugs injected into the ventricular system of man (intraventricular endephalo-pharmaco-therapy). J Neurosurg. 1965;22(5):441–8.

    Article  CAS  PubMed  Google Scholar 

  45. Graber JJ, Kesari S. Leptomeningeal metastases. Curr Treat Options Oncol. 2018;19(1):3.

    Article  PubMed  Google Scholar 

  46. Peyrl A, Chocholous M, Azizi AA, Czech T, Dorfer C, Mitteregger D, et al. Safety of Ommaya reservoirs in children with brain tumors: a 20-year experience with 5472 intraventricular drug administrations in 98 patients. J Neurooncol. 2014;120(1):139–45.

    Article  CAS  PubMed  Google Scholar 

  47. Blaney SM, Tagen M, Onar-Thomas A, Berg SL, Gururangan S, Scorsone K, et al. A phase-1 pharmacokinetic optimal dosing study of intraventricular topotecan for children with neoplastic meningitis: a Pediatric Brain Tumor Consortium study. Pediatr Blood Cancer. 2013;60(4):627–32.

    Article  CAS  PubMed  Google Scholar 

  48. Fleischhack G, Jaehde U, Bode U. Pharmacokinetics following intraventricular administration of chemotherapy in patients with neoplastic meningitis. Clin Pharmacokinet. 2005;44(1):1–31.

    Article  PubMed  Google Scholar 

  49. Meyers CA, Obbens EA, Scheibel RS, Moser RP. Neurotoxicity of intraventricularly administered alpha-interferon for leptomeningeal disease. Cancer. 1991;68(1):88–92.

    Article  CAS  PubMed  Google Scholar 

  50. Lazorthes Y, Verdie JC, Caute B, Maranhao R, Tafani M. Intracerebroventricular morphinotherapy for control of chronic cancer pain. Prog Brain Res. 1988;77:395–405.

    Article  CAS  PubMed  Google Scholar 

  51. Raffa RB, Pergolizzi JV Jr. Intracerebroventricular opioids for intractable pain. Br J Clin Pharmacol. 2012;74(1):34–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ballantyne JC, Carwood CM. Comparative efficacy of epidural, subarachnoid, and intracerebroventricular opioids in patients with pain due to cancer. Cochrane Database Syst Rev. 2005(1):CD005178.

    Google Scholar 

  53. Staquet H, Dupoiron D, Nader E, Menei P. Intracerebroventricular pain treatment with analgesic mixtures including ziconotide for intractable pain. Pain Physician. 2016;19(6):E905–15.

    Article  PubMed  Google Scholar 

  54. Turner M, Nguyen HS, Cohen-Gadol AA. Intraventricular baclofen as an alternative to intrathecal baclofen for intractable spasticity or dystonia: outcomes and technical considerations. J Neurosurg Pediatr. 2012;10(4):315–9.

    Article  PubMed  Google Scholar 

  55. Albright AL, Ferson SS. Intraventricular baclofen for dystonia: techniques and outcomes. Clinical article. J Neurosurg Pediatr. 2009;3(1):11–4.

    Article  PubMed  Google Scholar 

  56. Rocque BG, Leland AA. Intraventricular vs intrathecal baclofen for secondary dystonia: a comparison of complications. Neurosurgery. 2012;70(2 Suppl Operative):321–5; discussion 5–6.

    PubMed  Google Scholar 

  57. Becker R, Giacobini E, Elble R, McIlhany M, Sherman K. Potential pharmacotherapy of Alzheimer disease. A comparison of various forms of physostigmine administration. Acta Neurol Scand Suppl. 1988;116:19–32.

    Article  CAS  PubMed  Google Scholar 

  58. Eriksdotter Jonhagen M, Nordberg A, Amberla K, Backman L, Ebendal T, Meyerson B, et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord. 1998;9(5):246–57.

    Article  CAS  PubMed  Google Scholar 

  59. Harbaugh RE, Reeder TM, Senter HJ, Knopman DS, Baskin DS, Pirozzolo F, et al. Intracerebroventricular bethanechol chloride infusion in Alzheimer’s disease. Results of a collaborative double-blind study. J Neurosurg. 1989;71(4):481–6.

    Article  CAS  PubMed  Google Scholar 

  60. Harbaugh RE, Roberts DW, Coombs DW, Saunders RL, Reeder TM. Preliminary report: intracranial cholinergic drug infusion in patients with Alzheimer’s disease. Neurosurgery. 1984;15(4):514–8.

    Article  CAS  PubMed  Google Scholar 

  61. Penn RD, Martin EM, Wilson RS, Fox JH, Savoy SM. Intraventricular bethanechol infusion for Alzheimer’s disease: results of double-blind and escalating-dose trials. Neurology. 1988;38(2):219–22.

    Article  CAS  PubMed  Google Scholar 

  62. Smith RA, Balis FM, Ott KH, Elsberry DD, Sherman MR, Saifer MG. Pharmacokinetics and tolerability of ventricularly administered superoxide dismutase in monkeys and preliminary clinical observations in familial ALS. J Neurol Sci. 1995;129(Suppl):13–8.

    Article  CAS  PubMed  Google Scholar 

  63. Paul G, Zachrisson O, Varrone A, Almqvist P, Jerling M, Lind G, et al. Safety and tolerability of intracerebroventricular PDGF-BB in Parkinson’s disease patients. J Clin Invest. 2015;125(3):1339–46.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Svennerholm L, Brane G, Karlsson I, Lekman A, Ramstrom I, Wikkelso C. Alzheimer disease—effect of continuous intracerebroventricular treatment with GM1 ganglioside and a systematic activation programme. Dement Geriatr Cogn Disord. 2002;14(3):128–36.

    Article  CAS  PubMed  Google Scholar 

  65. Tsuboi Y, Doh-Ura K, Yamada T. Continuous intraventricular infusion of pentosan polysulfate: clinical trial against prion diseases. Neuropathology. 2009;29(5):632–6.

    Article  PubMed  Google Scholar 

  66. Schulz A, Ajayi T, Specchio N, de Los Reyes E, Gissen P, Ballon D, et al. Study of intraventricular Cerliponase alfa for CLN2 disease. N Engl J Med. 2018;378(20):1898–907.

    Article  CAS  PubMed  Google Scholar 

  67. Markham A. Cerliponase alfa: first global approval. Drugs. 2017;77(11):1247–9.

    Article  CAS  PubMed  Google Scholar 

  68. Cohen-Pfeffer JL, Gururangan S, Lester T, Lim DA, Shaywitz AJ, Westphal M, et al. Intracerebroventricular delivery as a safe, long-term route of drug administration. Pediatr Neurol. 2017;67:23–35.

    Article  PubMed  Google Scholar 

  69. Grover A, Crippen-Harmon D, Nave L, Vincelette J, Wait JCM, Melton AC, et al. Translational studies of intravenous and intracerebroventricular routes of administration for CNS cellular biodistribution for BMN 250, an enzyme replacement therapy for the treatment of Sanfilippo type B. Drug Deliv Transl Res. 2020;10(2):425–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Francis JS, Markov V, Wojtas ID, Gray S, McCown T, Samulski RJ, et al. Preclinical biodistribution, tropism, and efficacy of oligotropic AAV/Olig001 in a mouse model of congenital white matter disease. Mol Ther Methods Clin Dev. 2021;20:520–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int. 2004;45(4):545–52.

    Article  CAS  PubMed  Google Scholar 

  72. Thorne RG, Nicholson C. In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A. 2006;103(14):5567–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91(6):2076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Lonser RR, Sarntinoranont M, Morrison PF, Oldfield EH. Convection-enhanced delivery to the central nervous system. J Neurosurg. 2015;122(3):697–706.

    Article  PubMed  Google Scholar 

  75. Brady ML, Raghavan R, Singh D, Anand PJ, Fleisher AS, Mata J, et al. In vivo performance of a microfabricated catheter for intraparenchymal delivery. J Neurosci Methods. 2014;229:76–83.

    Article  PubMed  Google Scholar 

  76. Krauze MT, Saito R, Noble C, Tamas M, Bringas J, Park JW, et al. Reflux-free cannula for convection-enhanced high-speed delivery of therapeutic agents. J Neurosurg. 2005;103(5):923–9.

    Article  PubMed  Google Scholar 

  77. Raghavan R, Brady M. Predictive models for pressure-driven fluid infusions into brain parenchyma. Phys Med Biol. 2011;56(19):6179–204.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Stiles DK, Zhang Z, Ge P, Nelson B, Grondin R, Ai Y, et al. Widespread suppression of huntingtin with convection-enhanced delivery of siRNA. Exp Neurol. 2012;233(1):463–71.

    Article  CAS  PubMed  Google Scholar 

  79. Raghavan R, Brady ML, Rodriguez-Ponce MI, Hartlep A, Pedain C, Sampson JH. Convection-enhanced delivery of therapeutics for brain disease, and its optimization. Neurosurg Focus. 2006;20(4):E12.

    Article  PubMed  Google Scholar 

  80. Mamot C, Nguyen JB, Pourdehnad M, Hadaczek P, Saito R, Bringas JR, et al. Extensive distribution of liposomes in rodent brains and brain tumors following convection-enhanced delivery. J Neurooncol. 2004;68(1):1–9.

    Article  PubMed  Google Scholar 

  81. Sanftner LM, Sommer JM, Suzuki BM, Smith PH, Vijay S, Vargas JA, et al. AAV2-mediated gene delivery to monkey putamen: evaluation of an infusion device and delivery parameters. Exp Neurol. 2005;194(2):476–83.

    Article  CAS  PubMed  Google Scholar 

  82. Asthagiri AR, Walbridge S, Heiss JD, Lonser RR. Effect of concentration on the accuracy of convective imaging distribution of a gadolinium-based surrogate tracer. J Neurosurg. 2011;115(3):467–73.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Barua NU, Woolley M, Bienemann AS, Johnson D, Wyatt MJ, Irving C, et al. Convection-enhanced delivery of AAV2 in white matter—a novel method for gene delivery to cerebral cortex. J Neurosci Methods. 2013;220(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  84. Salegio EA, Streeter H, Dube N, Hadaczek P, Samaranch L, Kells AP, et al. Distribution of nanoparticles throughout the cerebral cortex of rodents and non-human primates: implications for gene and drug therapy. Front Neuroanat. 2014;8:9.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Hadaczek P, Yamashita Y, Mirek H, Tamas L, Bohn MC, Noble C, et al. The “perivascular pump” driven by arterial pulsation is a powerful mechanism for the distribution of therapeutic molecules within the brain. Mol Ther. 2006;14(1):69–78.

    Article  CAS  PubMed  Google Scholar 

  86. Varenika V, Dickinson P, Bringas J, LeCouteur R, Higgins R, Park J, et al. Detection of infusate leakage in the brain using real-time imaging of convection-enhanced delivery. J Neurosurg. 2008;109(5):874–80.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Dodge JC, Clarke J, Song A, Bu J, Yang W, Taksir TV, et al. Gene transfer of human acid sphingomyelinase corrects neuropathology and motor deficits in a mouse model of Niemann-Pick type A disease. Proc Natl Acad Sci U S A. 2005;102(49):17822–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Naidoo J, Stanek LM, Ohno K, Trewman S, Samaranch L, Hadaczek P, et al. Extensive transduction and enhanced spread of a modified AAV2 capsid in the non-human primate CNS. Mol Ther. 2018;26(10):2418–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Han SJ, Bankiewicz K, Butowski NA, Larson PS, Aghi MK. Interventional MRI-guided catheter placement and real time drug delivery to the central nervous system. Expert Rev Neurother. 2016;16(6):635–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sillay K, Schomberg D, Hinchman A, Kumbier L, Ross C, Kubota K, et al. Benchmarking the ERG valve tip and MRI interventions smart flow neurocatheter convection-enhanced delivery system's performance in a gel model of the brain: employing infusion protocols proposed for gene therapy for Parkinson's disease. J Neural Eng. 2012;9(2):026009.

    Article  PubMed  Google Scholar 

  91. Vogelbaum MA, Brewer C, Barnett GH, Mohammadi AM, Peereboom DM, Ahluwalia MS, et al. First-in-human evaluation of the Cleveland multiport catheter for convection-enhanced delivery of topotecan in recurrent high-grade glioma: results of pilot trial 1. J Neurosurg. 2018:1–10.

    Google Scholar 

  92. Glud AN, Bjarkam CR, Azimi N, Johe K, Sorensen JC, Cunningham M. Feasibility of three-dimensional placement of human therapeutic stem cells using the intracerebral microinjection instrument. Neuromodulation. 2016;19(7):708–16.

    Article  PubMed  Google Scholar 

  93. Richardson RM, Kells AP, Rosenbluth KH, Salegio EA, Fiandaca MS, Larson PS, et al. Interventional MRI-guided putaminal delivery of AAV2-GDNF for a planned clinical trial in Parkinson’s disease. Mol Ther. 2011;19(6):1048–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bankiewicz KS, Sudhakar V, Samaranch L, San Sebastian W, Bringas J, Forsayeth J. AAV viral vector delivery to the brain by shape-conforming MR-guided infusions. J Control Release. 2016;240:434–42.

    Article  CAS  PubMed  Google Scholar 

  95. Luz M, Allen PC, Bringas J, Boiko C, Stockinger DE, Nikula KJ, et al. Intermittent convection-enhanced delivery of GDNF into rhesus monkey putamen: absence of local or cerebellar toxicity. Arch Toxicol. 2018;92(7):2353–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Whone AL, Boca M, Luz M, Woolley M, Mooney L, Dharia S, et al. Extended treatment with glial cell line-derived neurotrophic factor in Parkinson’s disease. J Parkinsons Dis. 2019;9(2):301–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lindholm P, Voutilainen MH, Lauren J, Peranen J, Leppanen VM, Andressoo JO, et al. Novel neurotrophic factor CDNF protects and rescues midbrain dopamine neurons in vivo. Nature. 2007;448(7149):73–7.

    Article  CAS  PubMed  Google Scholar 

  98. Huttunen HJ, Saarma M. CDNF protein therapy in Parkinson’s disease. Cell Transplant. 2019;28(4):349–66.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2009-2013. Neuro Oncol. 2016;18(suppl_5):v1–v75.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Brem H, Piantadosi S, Burger PC, Walker M, Selker R, Vick NA, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-Brain Tumor Treatment Group. Lancet. 1995;345(8956):1008–12.

    Article  CAS  PubMed  Google Scholar 

  101. White E, Bienemann A, Taylor H, Hopkins K, Cameron A, Gill S. A phase I trial of carboplatin administered by convection-enhanced delivery to patients with recurrent/progressive glioblastoma multiforme. Contemp Clin Trials. 2012;33(2):320–31.

    Article  CAS  PubMed  Google Scholar 

  102. Lidar Z, Mardor Y, Jonas T, Pfeffer R, Faibel M, Nass D, et al. Convection-enhanced delivery of paclitaxel for the treatment of recurrent malignant glioma: a phase I/II clinical study. J Neurosurg. 2004;100(3):472–9.

    Article  CAS  PubMed  Google Scholar 

  103. Carpentier A, Metellus P, Ursu R, Zohar S, Lafitte F, Barrie M, et al. Intracerebral administration of CpG oligonucleotide for patients with recurrent glioblastoma: a phase II study. Neuro Oncol. 2010;12(4):401–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Souweidane MM, Kramer K, Pandit-Taskar N, Zhou Z, Haque S, Zanzonico P, et al. Convection-enhanced delivery for diffuse intrinsic pontine glioma: a single-centre, dose-escalation, phase 1 trial. Lancet Oncol. 2018;19(8):1040–50.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shimamura T, Husain SR, Puri RK. The IL-4 and IL-13 pseudomonas exotoxins: new hope for brain tumor therapy. Neurosurg Focus. 2006;20(4):E11.

    Article  PubMed  Google Scholar 

  106. Kunwar S, Chang S, Westphal M, Vogelbaum M, Sampson J, Barnett G, et al. Phase III randomized trial of CED of IL13-PE38QQR vs Gliadel wafers for recurrent glioblastoma. Neuro Oncol. 2010;12(8):871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cloughesy TF, Landolfi J, Vogelbaum MA, Ostertag D, Elder JB, Bloomfield S, et al. Durable complete responses in some recurrent high-grade glioma patients treated with Toca 511 + Toca FC. Neuro Oncol. 2018;20(10):1383–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cloughesy TF, Landolfi J, Hogan DJ, Bloomfield S, Carter B, Chen CC, et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma. Sci Transl Med. 2016;8(341):341ra75.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Mehta AM, Sonabend AM, Bruce JN. Convection-enhanced delivery. Neurotherapeutics. 2017;14(2):358–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Bartus RT, Johnson EM Jr. Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 1: where have we been and what have we learned? Neurobiol Dis. 2017;97(Pt B):156–68.

    Article  CAS  PubMed  Google Scholar 

  111. Bartus RT, Johnson EM Jr. Clinical tests of neurotrophic factors for human neurodegenerative diseases, part 2: where do we stand and where must we go next? Neurobiol Dis. 2017;97(Pt B):169–78.

    Article  CAS  PubMed  Google Scholar 

  112. LeWitt PA, Rezai AR, Leehey MA, Ojemann SG, Flaherty AW, Eskandar EN, et al. AAV2-GAD gene therapy for advanced Parkinson’s disease: a double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011;10(4):309–19.

    Article  CAS  PubMed  Google Scholar 

  113. Pauli WM, Nili AN, Tyszka JM. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei. Sci Data. 2018;5:180063.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Palfi S, Gurruchaga JM, Ralph GS, Lepetit H, Lavisse S, Buttery PC, et al. Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson’s disease: a dose escalation, open-label, phase 1/2 trial. Lancet. 2014;383(9923):1138–46.

    Article  CAS  PubMed  Google Scholar 

  115. Mittermeyer G, Christine CW, Rosenbluth KH, Baker SL, Starr P, Larson P, et al. Long-term evaluation of a phase 1 study of AADC gene therapy for Parkinson’s disease. Hum Gene Ther. 2012;23(4):377–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Christine CW, Bankiewicz KS, Van Laar AD, Richardson RM, Ravina B, Kells AP, et al. Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson’s disease. Ann Neurol. 2019;85(5):704–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Nikkhah G, Cunningham MG, Jodicke A, Knappe U, Bjorklund A. Improved graft survival and striatal reinnervation by microtransplantation of fetal nigral cell suspensions in the rat Parkinson model. Brain Res. 1994;633(1–2):133–43.

    Article  CAS  PubMed  Google Scholar 

  118. Backlund EO, Granberg PO, Hamberger B, Knutsson E, Martensson A, Sedvall G, et al. Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J Neurosurg. 1985;62(2):169–73.

    Article  CAS  PubMed  Google Scholar 

  119. Clarkson ED, Freed CR. Development of fetal neural transplantation as a treatment for Parkinson’s disease. Life Sci. 1999;65(23):2427–37.

    Article  CAS  PubMed  Google Scholar 

  120. Fink JS, Schumacher JM, Ellias SL, Palmer EP, Saint-Hilaire M, Shannon K, et al. Porcine xenografts in Parkinson’s disease and Huntington’s disease patients: preliminary results. Cell Transplant. 2000;9(2):273–8.

    Article  CAS  PubMed  Google Scholar 

  121. Stover NP, Watts RL. Spheramine for treatment of Parkinson’s disease. Neurotherapeutics. 2008;5(2):252–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Lindvall O. Update on fetal transplantation: the Swedish experience. Mov Disord. 1998;13(Suppl 1):83–7.

    PubMed  Google Scholar 

  123. Gross RE, Watts RL, Hauser RA, Bakay RA, Reichmann H, von Kummer R, et al. Intrastriatal transplantation of microcarrier-bound human retinal pigment epithelial cells versus sham surgery in patients with advanced Parkinson’s disease: a double-blind, randomised, controlled trial. Lancet Neurol. 2011;10(6):509–19.

    Article  PubMed  Google Scholar 

  124. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med. 2001;344(10):710–9.

    Article  CAS  PubMed  Google Scholar 

  125. Olanow CW, Goetz CG, Kordower JH, Stoessl AJ, Sossi V, Brin MF, et al. A double-blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann Neurol. 2003;54(3):403–14.

    Article  PubMed  Google Scholar 

  126. Goetz CG, Wuu J, McDermott MP, Adler CH, Fahn S, Freed CR, et al. Placebo response in Parkinson’s disease: comparisons among 11 trials covering medical and surgical interventions. Mov Disord. 2008;23(5):690–9.

    Article  PubMed  Google Scholar 

  127. Lindvall O, Hagell P. Role of cell therapy in Parkinson disease. Neurosurg Focus. 2002;13(5):e2.

    Article  PubMed  Google Scholar 

  128. Parmar M. Towards stem cell based therapies for Parkinson’s disease. Development. 2018;145(1):dev156117.

    Article  PubMed  Google Scholar 

  129. Garitaonandia I, Gonzalez R, Sherman G, Semechkin A, Evans A, Kern R. Novel approach to stem cell therapy in Parkinson’s disease. Stem Cells Dev. 2018;27(14):951–7.

    Article  PubMed  Google Scholar 

  130. Finkelstein R, Baughman RW, Steele FR. Harvesting the neural gene therapy fruit. Mol Ther. 2001;3(1):3–7.

    Article  CAS  PubMed  Google Scholar 

  131. Macauley SL, Sands MS. Promising CNS-directed enzyme replacement therapy for lysosomal storage diseases. Exp Neurol. 2009;218(1):5–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Janson C, McPhee S, Bilaniuk L, Haselgrove J, Testaiuti M, Freese A, et al. Clinical protocol. Gene therapy of Canavan disease: AAV-2 vector for neurosurgical delivery of aspartoacylase gene (ASPA) to the human brain. Hum Gene Ther. 2002;13(11):1391–412.

    Article  CAS  PubMed  Google Scholar 

  133. Leone P, Shera D, McPhee SW, Francis JS, Kolodny EH, Bilaniuk LT, et al. Long-term follow-up after gene therapy for canavan disease. Sci Transl Med. 2012;4(165):165ra3.

    Article  Google Scholar 

  134. Souweidane MM, Fraser JF, Arkin LM, Sondhi D, Hackett NR, Kaminsky SM, et al. Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. J Neurosurg Pediatr. 2010;6(2):115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Tardieu M, Zerah M, Gougeon ML, Ausseil J, de Bournonville S, Husson B, et al. Intracerebral gene therapy in children with mucopolysaccharidosis type IIIB syndrome: an uncontrolled phase 1/2 clinical trial. Lancet Neurol. 2017;16(9):712–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Abrams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abrams, D.J., Stewart, G.R. (2023). Targeted Drug Delivery to the CNS: Beyond the Intrathecal Space. In: Yaksh, T., Hayek, S. (eds) Neuraxial Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-031-39558-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-39558-1_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-39557-4

  • Online ISBN: 978-3-031-39558-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics