Skip to main content

Indoor Air Quality at Portuguese Firehouses

  • Chapter
  • First Online:
Occupational and Environmental Safety and Health V

Abstract

This work assessed firefighters’ exposure to gases pollutants in non- fire work settings during the pre-fire season as a baseline for the respective occupational exposure characterization. Indoor air sampling (total volatile organic compounds—TVOCs, ozone-O3, and carbon di oxide-CO2) was conducted for two weeks in the pre-fire season of 2021 in seven firehouses (FH1–FH7) situated in the north-interior of Portugal. The result showed that across all FH, TVOCs highly varied with observed levels of 180 μg m−3 and 11.5 mg m–3 (overall median of 1.86 mg m–3). Furthermore, at all FH, the observed levels highly exceeded (1.5–6.6 times) the Portuguese protective thresholds of 600 μg m–3 for indoor air quality in public buildings. On the contrary, the indoor ozone concentrations (range: 23–80 μg m–3; median 60 μg m–3) and CO2 (range 800–1160 mg m-3: median 924 mg m–3) were relatively low and in accordance with existing national standards. While the associations between the pollutants were low—moderate (|rs|= 0.030–0.679) to better identify the respective indoor emission sources, quantification of specific VOC compounds/classes is required in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. European Environment Agency (EEA).: Forest fire danger in the present climate and projected changes under two climate change scenarios (2020). Available from https://www.eea.eu-ropa.eu/data-and-maps/figures/overall-weather-driven-forest-fire. Accessed Mar 2021

  2. Faivre, N., Xanthopoulos, F., Moreno, J., Calzada, V., Xanthopoulos, G.: Forest Fires—Sparking firesmart policies in the EU. (2018). https://doi.org/10.2777/181450

    Article  Google Scholar 

  3. San-Miguel-Ayanz, J., Durrant, T., Boca, R., Mianti, P., Libertá, G., et al.: Forest Fires in Europe, Middle East and North Africa 2020. Publication Office of the European Union, Luxembourg (2021)

    Google Scholar 

  4. Vivancos, T., Houston Durrant, T., Libertà, G.: Forest fire danger extremes in Europe under climate change: variability and uncertainty. Publications Office. European Commission (EC), Joint Research Centre, (2018). https://data.europa.eu/doi/10.2760/13180

  5. Gaughan, D.M., Piacitelli, C.A., Chen, B.T., Law, B.F., Virji, M.A., Edwards, N.T., et al.: Exposures and cross-shift lung function declines in wildland firefighters. J. Occup. Environ. Hyg. 11, 591–603 (2014). https://doi.org/10.1080/15459624.2014

    Article  Google Scholar 

  6. Gianniou, N., Katsaounou, P., Dima, E., Giannakopoulou, C.-E., Kardara, M., Saltagianni, V., et al.: Prolonged occupational exposure leads to allergic airway sensitization and chronic airway and systemic inflammation in professional firefighters. Respir. Med. 118, 7–14 (2016). https://doi.org/10.1016/j.rmed.2016.07.006

    Article  Google Scholar 

  7. Gaughan, D.M., Siegel, P.D., Hughes, M.D., Chang, C.-Y., Law, B.F., Camp-bell, C.R., et al.: Arterial stiffness, oxidative stress, and smoke exposure in wildland firefighters. Am. J. Ind. Med. 57, 748–756 (2014). https://doi.org/10.1002/ajim.22331

    Article  Google Scholar 

  8. International Agency on Research on Cancer (IARC).: Monographs on the evaluation of carcinogenic risks to humans: painting, firefighting and shiftwork, vol. 98. International Agency on Research on Cancer Lyon, France (2010)

    Google Scholar 

  9. Daniels, R.D., Kubale, T.L., Yiin, J.H., Dahm, M.M., Hales, T.R., Baris, D., et al.: Mortality and cancer incidence in a pooled cohort of US fire-fighters from San Francisco, Chicago, and Philadelphia (1950–2009). J. Occup. Environ. Med., 71(6), 388 (2014). https://doi.org/10.1136/oemed-2013-101662.

  10. Glass, D.C., Del Monaco, A., Pircher, S., Vandeer Hoorn, S., Sim, M.R.: Mortality and cancer incidence at a fire training college. Occupational Medicine (Chic Ill) 66, 536–542 (2016). https://doi.org/10.1093/occmed/kqw079

    Article  Google Scholar 

  11. Stec, A.A., Dickens, K.E., Salden, M., Hewitt, F.E., Watts, D.P., Houldsworth, P.E., et al.: Occupational exposure to polycyclic aromatic hydrocarbons and elevated cancer incidence in firefighters. Sci. Rep. 8, 2476 (2018)

    Article  Google Scholar 

  12. Halios, C.H., Landeg-Cox, C., Lowther, S.D., Middleton, A., Marczylo, T., Dimitroulopoulou, S.:. Chemicals in European residences —Part I: A review of emissions, concentrations and health effects of volatile organic compounds (VOCs). Sci. Total. Environ., 839, art. no. 156201. (2022). https://doi.org/10.1016/j.scitotenv.2022.156201

  13. International Agency on Research on Cancer (IARC).: IARC Monographs evaluate the carcinogenicity of occupational exposure as a firefighter. Press release no. 317 (2022). https://doi.org/10.1016/S1470-2045(22)00390-4

  14. Barros, B., Oliveira, M., Morais, S.: Insight into the potential of urinary biomarkers of oxidative stress for firefighters’ health surveillance. Stud. Syst., Decis. Control. 406, 321–335 (2022). https://doi.org/10.1007/978-3-030-89617-1_29

    Article  Google Scholar 

  15. Barros, B., Oliveira, M., Morais, S.: Firefighters’ occupational exposure: Contribution from biomarkers of effect to assess health risks. Environ. Int. 2021(156), 106704 (2021). https://doi.org/10.1016/j.envint.2021.106704

    Article  Google Scholar 

  16. Autoridade Nacional de Emergência e Proteção Civil (ANEPC).: Avaliação Nacional de Riscos, 2019 (in portuguese). Autoridade Nacional de Emergência e Proteção Civil, Portugal. (2019). Available at prociv.pt/bk/RISCOSPREV/AVALIACAONACIO-NALRISCO/Pub-lishing Images/Paginas/default/ANR2019-vers%C3%A3ofinal.pdf

    Google Scholar 

  17. Português, I., do Mar e da Atmosfera (IPMA).: Boletim Anual Resumo 2021 (in portu- guese). Instituto Português do Mar e da Atmosfera, Portugal (2021)

    Google Scholar 

  18. Ordinance No. 138-G/2021.: Saúde e ambiente e ação climática (in Portuguese). Diário da Repú- blica, 126/2021, 2º Suplemento, 128(2)– 128(6)

    Google Scholar 

  19. Engelsman, M., Snoek, M.F., Banks, A.P., Cantrell, P., Wang, X., Toms, L.M. et al. (2019). Expo- sure to metals and semivolatile organic compounds in Australian fire stations. Environmental Research, 179, 108745. https://doi.org/10.1016/j.envres.2019.108745

  20. Engelsman, M., Toms, L.M.L., Banks, A.P., Wang, X., Mueller, J.F.: Biomonitoring in fire-fighters for volatile organic compounds, semivolatile organic compounds, persistent organic pollutants, and metals: A systematic review. Environ. Res., 188, 109562 (2020). https://doi.org/10.1016/j.envres.2019.108745

  21. Tsai, W.-T.: An overview of health hazards of volatile organic compounds regulated as in- door air pollutants. Rev. Environ. Health 34(1), 81–89 (2019). https://doi.org/10.1515/reveh-2018-0046

    Article  MathSciNet  Google Scholar 

  22. Liu, N., Bu, Z., Liu, W., Kan, H., Zhao, Z., Deng, F., Huang, C., Zhao, B., Zeng, X., Sun, Y., Qian, H., Mo, J., Sun, C., Guo, J., Zheng, X., Weschler, L.B., Zhang, Y.: Indoor exposure levels and risk assessment of volatile organic compounds in residences, schools, and offices in China from 2000 to 2021: A systematic review. Indoor Air, 32 (9), art. no. e13091, (2022). https://doi.org/10.1111/ina.13091

  23. You, B., Zhou, W., Li, J., Li, Z., Sun, Y.: A review of indoor gaseous organic compounds and human chemical exposure: Insights from real-time measurements Environ. Int., 170, art. no. 107611, (2022). https://doi.org/10.1016/j.envint.2022.107611

  24. Colman Lerner, J., Gutierrez, M., Mellado, D., Massolo, L., Yanina Sanchez, E., Porta, A.: Characterization and cancer risk assessment of VOCs in home and school environments in gran La Plata. Argentina. Environmental Science and Pollution Research 25(10), 10039–10048 (2018). https://doi.org/10.1007/s11356-018-1265-2

    Article  Google Scholar 

  25. de Gennaro, G., Farella, G., Marzocca, A., Mazzone, A., Tutino, M.: Indoor and outdoor monitoring of volatile organic compounds in school buildings: Indicators based on health risk assessment to single out critical issues. Int. J. Environ. Res. Public Health 10(12), 6273–6291 (2013). https://doi.org/10.3390/ijerph10126273

    Article  Google Scholar 

  26. Geiss, O., Giannopoulos, G., Tirendi, S., Barrero-Moreno, J., Larsen, B.R., Kotzias, D.: The AIRMEX study - VOC measurements in public buildings and schools/kindergartens in eleven European cities: Statistical analysis of the data. Atmos. Environ. 45(22), 3676–3684 (2011). https://doi.org/10.1016/j.atmosenv.2011.04.037

    Article  Google Scholar 

  27. Guo, H., Kwok, N.H., Cheng, H.R., Lee, S.C., Hung, W.T., Li, Y.I.: Formaldehyde and volatile organic compounds in Hong Kong homes: Concentrations and impact factors. Indoor Air 19(3), 206–217 (2009). https://doi.org/10.1111/j.1600-0668.2008.00580.x

    Article  Google Scholar 

  28. Masih, A., Lall, A.S., Taneja, A., Singhvi, R.: Exposure profiles, seasonal variation and health risk assessment of BTEX in indoor air of homes at different microenvironments of a terai province of northern India. Chemosphere 176, 8–17 (2017). https://doi.org/10.1016/j.che-mosphere.2017.02.105

    Article  Google Scholar 

  29. Pei, J., Yin, Y., Liu, J., Dai, X.: An eight-city study of volatile organic compounds in Chinese residences: Compounds, concentrations, and characteristics. Sci. Total. Environ, 698, 134137 (2020). https://doi.org/10.1016/j.scitotenv.2019.134137

  30. Fent, K.W., Evans, D.E., Booher, D., Pleil, J.D., Stiegel, M.A., Horn, G.P., Dalton, J.: Volatile organic compounds off-gassing from firefighters’ personal protective equipment en- sembles after use. J. Occup. Environ. Hyg. 12(6), 404–414 (2015). https://doi.org/10.1080/15459624.2015.1025135

    Article  Google Scholar 

  31. Dutta, T., Kim, K.-H., Uchimiya, M., Kumar, P., Das, S., Bhattacharya, S.S., Szulejko, J.: The micro-environmental impact of volatile organic compound emissions from large-scale assem- blies of people in a confined space. Environ. Res. 151, 304–312 (2016). https://doi.org/10.1016/j.envres.2016.08.009

    Article  Google Scholar 

  32. Liu, S., Li, R., Wild, R.J., Warneke, C., de Gouw, J.A., Brown, S.S., Miller, S.L., Luongo, J.C., Jimenez, J.L., Ziemann, P.J.: Contribution of human-related sources to indoor volatile organic compounds in a university classroom. Indoor Air, 26(6), 925–938 (2016). https://doi.org/10.1111/ina.12272

  33. Weschler, C.J.: Ozone’s impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. Environ. Health Perspective 114(10), 1489–1496 (2006)

    Article  Google Scholar 

  34. López, L.R., Dessì, P., Cabrera-Codony, A., Rocha-Melogno, L., Kraakman, B., Naddeo, V., Balaguer, M.D., Puig, S.: CO2 in indoor environments: From environmental and health risk to potential renewable carbon source. Sci. Total. Environ., 856, 159088 (2023). https://doi.org/10.1016/j.scitotenv.2022.159088

  35. Leung, D.Y.C.: Outdoor-indoor air pollution in urban environment: challenges and oppor- tunity. Front. Environ. Sci. 2, 1–7 (2015). https://doi.org/10.3389/fenvs.2014.00069

    Article  Google Scholar 

  36. Namdari, M., Lee, C.-S., Haghighat, F.: Active ozone removal technologies for a safe indoor environment: A comprehensive review. Building and Environment, 187, (2021). https://doi.org/10.1016/j.buildenv.2020.107370

Download references

Acknowledgements

This work was financially supported by PCIF/SSO/0017/2018 by FCT-MCTES through national funds. Additional supports include projects LA/P/0045/2020 (ALiCE), UIDB/00511/2020-UIDP/00511/2020 (LEPABE), UIDB/00690/2020-UIDP/00690/2020 (CIMO), LA/P/0007/2020 (Sus-TEC), and UIDB/50006/2020-UIDP/50006/2020 (REQUIMTE), and FCT fellowships SFRH/BPD/115/112/2016, 2020.07394.BD, and UI/BD/150783/2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Slezakova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Slezakova, K. et al. (2024). Indoor Air Quality at Portuguese Firehouses. In: Arezes, P.M., et al. Occupational and Environmental Safety and Health V. Studies in Systems, Decision and Control, vol 492. Springer, Cham. https://doi.org/10.1007/978-3-031-38277-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-38277-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-38276-5

  • Online ISBN: 978-3-031-38277-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics