Skip to main content

Principles and Applications of Environmental Biotechnology for Sustainable Future

  • Chapter
  • First Online:
Climate-Resilient Agriculture, Vol 1

Abstract

This chapter reviews the state of art and potential of environmental biotechnology, as well as the challenges and considerations that go along with it. Given the wide range of issues that the industry and country face in the discipline of environmental biotechnology, the functions of some biological processes as well as biosystems to control environmental safety and health based on the use of living organisms have been investigated. The success as well as the possibilities in the advancement of technology is considered while evaluating environmental remediation pollution control monitoring and detection. To demonstrate each of the major areas of environmental biotechnology, such as wastewater treatment, many related topics have been chosen. Dealing with both process engineering and microbiological elements of waste gas treatment, soiltreatment, and solid waste treatment. The specific significance of environmental biotechnology in the time ahead is stressed due to the possibility to offer up-to-date solutions and directions in the repair of damaged environments while avoiding future waste discharge and creating pollution control alternatives. To capitalize on these opportunities, creative and new techniques advancing the use of genetic engineering technology and molecular biochemical processes are being investigated. This strategy would improve knowledge of present biological processes to boost their productivity, adaptability, and efficiency. There is an example of the implementation and development of such strategies. The contribution of environmental biotechnology to the creation of a truly sustainable future is indeed made clear. By fusing biotechnology alongside related technologies and making sure that safety procedures are an essential part for the project, environmental biotechnology has served as one of the opportunities for avoiding, stopping, and restoring environmental damage. Biotechnological methods and commodities could be employed with the aim of long-term ecological safety to protect environmental safety.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almazroo OA, Miah MK, Venkataramanan R (2017) Drug metabolism in the liver. Clin Liver Dis 21(1):1–20

    PubMed  Google Scholar 

  • Alvarino T, Lema J, Omil F, Suárez S (2018) Trends in organic micropollutants removal in secondary treatment of sewage. Rev Environ Sci Biotechnol 17:447–469

    Google Scholar 

  • Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32:1–18

    CAS  Google Scholar 

  • Bakar SN, Hasan HA, Mohammad AW, Abdullah SR, Haan TY, Ngteni R, Yusof KM (2018) A review of moving-bed biofilm reactor technology for palm oil mill effluent treatment. J Clean Prod 171:1532–1545

    Google Scholar 

  • Bering S, Mazur J, Tarnowski K, Janus M, Mozia S, Morawski AW (2018) The application of moving bed bio-reactor (MBBR) in commercial laundry wastewater treatment. Sci Total Environ 627:1638–1643

    CAS  PubMed  Google Scholar 

  • Brierley CL (2008) How will biomining be applied in future? Transact Nonferr Metal Soc China 18(6):1302–1310

    CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25(3):294–306

    CAS  PubMed  Google Scholar 

  • Cristorean C, Micle V, Sur IM (2016) A critical analysis of ex-situ bioremediation technologies of hydrocarbon polluted soils. Ecoterra J Environ Res Prot 13:17–29

    Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533):1289–1292

    CAS  PubMed  Google Scholar 

  • Dale BE, Kim S (2008) Biomass refining global impact-the biobased economy of the 21st century. In: Biorefineries-industrial processes and products: status quo and future directions. Wiley, Weinheim, pp 41–66

    Google Scholar 

  • Daugulis AJ, Boudreau NG (2003) Removal and destruction of high concentrations of gaseous toluene in a two-phase partitioning bioreactor by Alcaligenes xylosoxidans. Biotechnol Lett 25:1421–1424

    CAS  PubMed  Google Scholar 

  • Dervash MA, Bhat RA, Shafiq S, Singh DV, Mushtaq N (2020) Biotechnological intervention as an aquatic clean up tool. In: Qadri H, Bhat R, Mehmood M, Dar G (eds) Fresh water pollution dynamics and remediation. Springer, Singapore

    Google Scholar 

  • Desiante WL, Carles L, Wullschleger S, Joss A, Stamm C, Fenner K (2022) Wastewater microorganisms impact the micropollutant biotransformation potential of natural stream biofilms. Water Res 217:118413

    CAS  PubMed  Google Scholar 

  • Dias RL, Ruberto L, Calabró A, Balbo AL, Del Panno MT, Mac Cormack WP (2015) Hydrocarbon removal and bacterial community structure in on-site biostimulated biopile systems designed for bioremediation of diesel-contaminated Antarctic soil. Polar Biol 38:677–687

    Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doble M, Kruthiventi AK, Gaikar VG (2004) Biotransformations and bioprocesses, 1st edn. CRC Press. https://doi.org/10.1201/9780203026373

    Book  Google Scholar 

  • Dutta TK, Samanta TB (1997) Novel catalytic activity of immobilized spores under reduced water activity. Bioorg Med Chem Lett 7(5):629–632

    CAS  Google Scholar 

  • El-Taliawy H, Casas ME, Bester K (2018) Removal of ozonation products of pharmaceuticals in laboratory Moving Bed Biofilm Reactors (MBBRs). J Hazard Mater 347:288–298

    CAS  PubMed  Google Scholar 

  • Fahmideh L, Khodadadi E, Khodadadi E (2014) A review of applications of biotechnology in the environment. Int J Farm Allied Sci 3(12):1319–1325

    Google Scholar 

  • Fernandez-Fontaina E, Carballa M, Omil F, Lema JM (2014) Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors. Water Res 65:371–383

    CAS  PubMed  Google Scholar 

  • Fischer K, Majewsky M (2014) Cometabolic degradation of organic wastewater micropollutants by activated sludge and sludge-inherent microorganisms. Appl Microbiol Biotechnol 98:6583–6597

    CAS  PubMed  Google Scholar 

  • Folch A, Vilaplana M, Amado L, Vicent T, Caminal G (2013) Fungal permeable reactive barrier to remediate groundwater in an artificial aquifer. J Hazard Mater 262:554–560

    CAS  PubMed  Google Scholar 

  • Fono LJ, Kolodziej EP, Sedlak DL (2006) Attenuation of wastewater-derived contaminants in an effluent-dominated river. Environ Sci Technol 40(23):7257–7262

    CAS  PubMed  Google Scholar 

  • Frascari D, Zanaroli G, Danko AS (2015) In situ aerobic cometabolism of chlorinated solvents: A review. J Hazard Mater 283:382–399

    CAS  PubMed  Google Scholar 

  • Gaur N, Narasimhulu K, PydiSetty Y (2018) Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J Clean Prod 198:1602–1631

    CAS  Google Scholar 

  • Gavrilescu M, Chisti Y (2005) Biotechnology—a sustainable alternative for chemical industry. Biotechnol Adv 23(7–8):471–499

    CAS  PubMed  Google Scholar 

  • Ghahari S, Ghahari S, Ghahari S, Nematzadeh GA, Sarma H (2021) Environmental biotechnology: toward a sustainable future. Biotechnol Sust Environ:1–31

    Google Scholar 

  • GISS (2017) NASA’s Goddard Institute for Space Studies. Responding to climate change, New York. 212-678-5507

    Google Scholar 

  • Gomez F, Sartaj M (2014) Optimization of field scale biopiles for bioremediation of petroleum hydrocarbon contaminated soil at low temperature conditions by response surface methodology (RSM). Int Biodeterior Biodegrad 89:103–109

    CAS  Google Scholar 

  • Guengerich FP (2001) Common and uncommon cytochrome P450 reactions related to metabolism and chemical toxicity. Chem Res Toxicol 14(6):611–650

    CAS  PubMed  Google Scholar 

  • Gulde R, Meier U, Schymanski EL, Kohler HP, Helbling DE, Derrer S, Rentsch D, Fenner K (2016) Systematic exploration of biotransformation reactions of amine-containing micropollutants in activated sludge. Environ Sci Technol 50(6):2908–2920

    CAS  PubMed  Google Scholar 

  • Haque N, Norgate T (2014) The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia. J Clean Prod 84:382–390

    CAS  Google Scholar 

  • Hobson AM, Frederickson J, Dise NB (2005) CH4 and N2O from mechanically turned windrow and vermicomposting systems following in-vessel pre-treatment. Waste Manag 25(4):345–352

    CAS  PubMed  Google Scholar 

  • Huang D, Guo X, Peng Z, Zeng G, Xu P, Gong X, Deng R, Xue W, Wang R, Yi H, Liu C (2018) White rot fungi and advanced combined biotechnology with nanomaterials: promising tools for endocrine-disrupting compounds biotransformation. Crit Rev Biotechnol 38(5):671–689

    CAS  PubMed  Google Scholar 

  • Hussain A, Ahmed S, editors (2020) Advanced treatment techniques for industrial wastewater. IGI Global

    Google Scholar 

  • IPCC (2014) Intergovernmental Panel on Climate Change Fifth Assessment Report, Summary for Policy makers

    Google Scholar 

  • Ite AE, Ibok UJ (2019) Role of plants and microbes in bioremediation of petroleum hydrocarbons contaminated soils. Int J Environ Biorem Biodegrad 7(1):1–19

    CAS  Google Scholar 

  • Kennes-Veiga DM, Gónzalez-Gil L, Carballa M, Lema JM (2022) Enzymatic cometabolic biotransformation of organic micropollutants in wastewater treatment plants: a review. Bioresour Technol 344:126291

    CAS  PubMed  Google Scholar 

  • Kim S, Krajmalnik-Brown R, Kim JO, Chung J (2014) Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. Sci Total Environ 497:250–259

    PubMed  Google Scholar 

  • Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. Recent Adv White Biotechnol Fungi: Pers Prod Environ 2:1–64

    Google Scholar 

  • Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD, Yadav AN (2021) Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. Environ Sci Pollut Res 28:24917–24939

    CAS  Google Scholar 

  • Krah D, Ghattas AK, Wick A, Bröder K, Ternes TA (2016) Micropollutant degradation via extracted native enzymes from activated sludge. Water Res 95:348–360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar PS (2019) Soil bioremediation techniques. In: Advanced treatment techniques for industrial wastewater. IGI Global, pp 35–50

    Google Scholar 

  • Kumar A, Devi S, Singh D (2018) Significance and approaches of microbial bioremediation in sustainable development. In: Singh J, Sharm D, Kumar G, Sharma N (eds) Microbial bioprospecting for sustainable development. Springer, Singapore, pp 93–114

    Google Scholar 

  • Litchfield CD (1991) Practices, potential, and pitfalls in the application of biotechnology to environmental problems. In: Sayler GS, Fox R, Blackburn JW (eds) Environmental biotechnology for waste treatment. Environmental science research. Springer, pp 146–157

    Google Scholar 

  • Lors C, Damidot D, Ponge JF, Périé F (2012) Comparison of a bioremediation process of PAHs in a PAH-contaminated soil at field and laboratory scales. Environ Pollut 165:11–17

    CAS  PubMed  Google Scholar 

  • Luengo JM, Garcıa B, Sandoval A, Naharro G, Olivera ER (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6(3):251–260

    CAS  PubMed  Google Scholar 

  • Manzoor MM (2020) Environmental biotechnology: for sustainable future. In: Bhat R, Hakeem K, Dervash M (eds) Bioremediation and biotechnology. Springer, Cham, pp 241–258

    Google Scholar 

  • Men Y, Achermann S, Helbling DE, Johnson DR, Fenner K (2017) Relative contribution of ammonia oxidizing bacteria and other members of nitrifying activated sludge communities to micropollutant biotransformation. Water Res 109:217–226

    CAS  PubMed  Google Scholar 

  • Meyer UA (1996) Overview of enzymes of drug metabolism. J Pharmacokinet Biopharm 24:449–459

    CAS  PubMed  Google Scholar 

  • Mishra S et al (2019) Heavy metal contamination: an alarming threat to environment and human health. In: Sobti R, Arora N, Kothari R (eds) Environmental biotechnology: for sustainable future. Springer, Singapore, pp 103–125

    Google Scholar 

  • Moldes C, García P, García JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70(6):3205–3212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen PY, Carvalho G, Reis MA, Oehmen A (2021) A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. Water Res 188:116446

    CAS  PubMed  Google Scholar 

  • Philp JC, Atlas RM (2005) Bioremediation of contaminated soils and aquifers. In: Bioremediation: applied microbial solutions for real-world environmental cleanup. ASM Press, pp 139–236

    Google Scholar 

  • Pino-Herrera DO, Pechaud Y, Huguenot D, Esposito G, van Hullebusch ED, Oturan MA (2017) Removal mechanisms in aerobic slurry bioreactors for remediation of soils and sediments polluted with hydrophobic organic compounds: an overview. J Hazard Mater 339:427–449

    CAS  PubMed  Google Scholar 

  • Rawlings DE (2013) Biomining: theory, microbes and industrial processes. Springer Science & Business Media

    Google Scholar 

  • Reddy CSK, Ghai R, Kalia V (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87(2):137–146

    CAS  PubMed  Google Scholar 

  • Reiss M, Hartmeier W (2001) Monitoring of environmental processes with biosensors. Biotechnol Set 2(7):125–139

    Google Scholar 

  • Rodriguez-Mozaz S, Marco MP, De Alda ML, Barceló D (2004) Biosensors for environmental applications: Future development trends. Pure Appl Chem 76(4):723–752

    CAS  Google Scholar 

  • Roy M, Giri AK, Dutta S, Mukherjee P (2015) Integrated phytobial remediation for sustainable management of arsenic in soil and water. Environ Int 75:180–198

    CAS  PubMed  Google Scholar 

  • Senusi F, Shahadat M, Ismail S, Hamid SA (2018) Recent advancement in membrane technology for water purification. In: Oves M, Khan MZ, Ismail IM (eds) Modern age environmental problems and their remediation. Springer, Cham, pp 147–167

    Google Scholar 

  • Sharaff MM, Subrahmanyam G, Kumar A, Yadav AN (2020) Mechanistic understanding of the root microbiome interaction for sustainable agriculture in polluted soils. In: New and future developments in microbial biotechnology and bioengineering. Elsevier, pp 61–84

    Google Scholar 

  • Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, Singh K (2019) Trichoderma: biodiversity, ecological significances, and industrial applications. Recent advancement in white biotechnology through fungi: diversity and enzymes perspectives. Springer Singapore, pp 85–120

    Google Scholar 

  • Shayler H, McBride M, Harrison E (2009) Sources and impacts of contaminants in soils. Cornell Waste Manage Inst 1:1–6

    Google Scholar 

  • Siddiqui MH, Kumar A, Kesari KK, Arif JM (2009) Biomining-a useful approach toward metal extraction. Am Eur J Agron 2(2):84–88

    Google Scholar 

  • Singh RL (ed) (2017) Principles and applications of environmental biotechnology for a sustainable future. Springer, Singapore. https://doi.org/10.1007/978-981-10-1866-4

    Book  Google Scholar 

  • Singh RP, Sarkar A (2015) Waste management: challenges, threats and opportunities. Nova Science Publishers Inc.

    Google Scholar 

  • Singh PK, Singh RL (2017) Bio-removal of azo dyes: a review. Int J Appl Sci Biotechnol 5(2):108–126

    CAS  Google Scholar 

  • Singh J, Yadav AN (eds) (2020) Natural bioactive products in sustainable agriculture. Springer Nature

    Google Scholar 

  • Singh R, Kumar M, Mittal A, Mehta PK (2017) Microbial metabolites in nutrition, healthcare and agriculture. 3 Biotech 7:1–14

    Google Scholar 

  • Singh C, Tiwari S, Singh JS (2020a) Biochar: a sustainable tool in soil pollutant bioremediation. In: Bharagava R, Saxena G (eds) Bioremediation of industrial waste for environmental safety. Springer, Singapore, pp 475–494

    Google Scholar 

  • Singh R, Chakma S, Birke V (2020b) Numerical modelling and performance evaluation of multi-permeable reactive barrier system for aquifer remediation susceptible to chloride contamination. Groundw Sust Develop 10:100317

    Google Scholar 

  • Srivastava V, Ismail SA, Singh P, Singh RP (2015) Urban solid waste management in the developing world with emphasis on India: challenges and opportunities. Rev Environ Sci Biotechnol 14:317–337

    Google Scholar 

  • Srivastava V, De Araujo ASF, Vaish B, Bartelt-Hunt S, Singh P, Singh RP (2016) Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. Rev Environ Sci Biotechnol 15:677–696

    PubMed  PubMed Central  Google Scholar 

  • Stevens ES (2020) The reemergence of bioplastics. In: Green plastics. Princeton University Press, pp 104–134

    Google Scholar 

  • Swanson WJ, Loehr RC (1997) Biofiltration: fundamentals, design and operations principles, and applications. J Environ Eng 123(6):538–546

    CAS  Google Scholar 

  • Tran NH, Urase T, Ngo HH, Hu J, Ong SL (2013) Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants. Bioresour Technol 146:721–731

    CAS  PubMed  Google Scholar 

  • Tucker CL, Fields S (2001) A yeast sensor of ligand binding. Nat Biotechnol 19(11):1042–1046

    CAS  PubMed  Google Scholar 

  • Uddin BMM, Yusuf MA, Ratan ZA (2017) A review of superbug: a global threat in health care system. Bangladesh J Infect Dis 4(1):25–28

    Google Scholar 

  • Vaboliene G, Matuzevičius AB (2005) Investigation into biological nutrient removal from wastewater. J Environ Eng Landsc Manag 13(4):177–181

    Google Scholar 

  • Vaish B, Singh P, Srivastava V, Singh PK, Singh RP (2019) Municipal solid waste management in India: present status and energy conversion opportunities. In: Emerging energy alternatives for sustainable environment. CRC Press, pp 277–304

    Google Scholar 

  • Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18:121–129

    CAS  PubMed  Google Scholar 

  • Whelan MJ, Coulon F, Hince G, Rayner J, McWatters R, Spedding T, Snape I (2015) Fate and transport of petroleum hydrocarbons in engineered biopiles in polar regions. Chemosphere 131:232–240

    CAS  PubMed  Google Scholar 

  • WHO G (1982) Rapid assessment of sources of air, water and land pollution. Food and Agriculture Organization of United Nations, Geneva

    Google Scholar 

  • Willke T, Prüße U, Vorlop KD (2005) Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources. In: Biorefineries‐industrial processes and products: status quo and future directions, pp 385–406

    Google Scholar 

  • World Bank (2013) Health nutrition and population statistics. World health Statistics 2013 published by World bank

    Google Scholar 

  • Wrighton SA, VandenBranden M, Ring BJ (1996) The human drug metabolizing cytochromes P450. J Pharmacokinet Biopharm 24:461–473

    CAS  PubMed  Google Scholar 

  • Xu X, Wang G, Zhou L, Yu H, Yang F (2018) Start-up of a full-scale SNAD-MBBR process for treating sludge digester liquor. Chem Eng J 343:477–483

    CAS  Google Scholar 

  • Yadav AN (2021) Beneficial plant-microbe interactions for agricultural sustainability. J Appl Biol Biotechnol 9(1):1–4

    Google Scholar 

  • Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha TCK, Singh B, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5(6):45–57

    CAS  Google Scholar 

  • Yang C, Qian H, Li X, Cheng Y, He H, Zeng G, Xi J (2018) Simultaneous removal of multicomponent VOCs in biofilters. Trends Biotechnol 36(7):673–685

    CAS  PubMed  Google Scholar 

  • Yi H, Zeng G, Lai C, Huang D, Tang L, Gong J, Xiong W (2017) Environment-friendly fullerene separation methods. Chem Eng J 330:134–145

    CAS  Google Scholar 

  • Yi H, Qin L, Huang D, Zeng G, Lai C, Liu X, Guo X (2019) Nano-structured bismuth tungstate with controlled morphology: fabrication, modification, environmental application and mechanism insight. Chem Eng J 358:480–496

    CAS  Google Scholar 

  • Yi H, Li M, Huo X, Zeng G, Lai C, Huang D, Zhang M (2020) Recent development of advanced biotechnology for wastewater treatment. Crit Rev Biotechnol 40(1):99–118

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Farid, M. et al. (2023). Principles and Applications of Environmental Biotechnology for Sustainable Future. In: Hasanuzzaman, M. (eds) Climate-Resilient Agriculture, Vol 1. Springer, Cham. https://doi.org/10.1007/978-3-031-37424-1_34

Download citation

Publish with us

Policies and ethics