Skip to main content

MR Protocols for Paediatric Neurosurgical Common Conditions: An Update Guide for Neurosurgeons

  • Chapter
  • First Online:
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 48))

Abstract

The biggest challenge for clinicians and surgeons when it comes to radiological examinations is the ability to request the right modalities and to understand the strengths and limitations of each modality. This is particularly important in paediatric neurosciences where despite magnetic resonance imaging (MRI) being the main imaging modality, there are several protocols, technical limitations of specific scanners and issues related to sedation that need to be taken into account. In this chapter, we describe a simple approach for six common neurosurgical conditions to guide the paediatric neurosurgeons in requesting the right MR protocol and understanding the rationale of it.

Paediatric neuro-oncology, epilepsy and neck/skull base protocols are discussed elsewhere in this book and therefore will not be a focus in this chapter (Bernasconi et al., Epilepsia 60:1054–68, 2019; D’Arco et al., Neuroradiology 64:1081–100; 2022; Avula et al., Childs Nerv Syst 37:2497–508; 2021).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Standard and fast brain protocol changes depending on the institution and radiologist preferences; in our institution axial T2WI, axial DWI, coronal FLAIR and 3D T1WI are used.

References

  1. Dinçer A, Yildiz E, Kohan S, Memet Özek M. Analysis of endoscopic third ventriculostomy patency by MRI: value of different pulse sequences, the sequence parameters, and the imaging planes for investigation of flow void. Childs Nerv Syst. 2011;27:127–35.

    Article  PubMed  Google Scholar 

  2. Dinçer A, Kohan S, Özek MM. Is all “communicating” hydrocephalus really communicating? Prospective study on the value of 3D-constructive interference in steady state sequence at 3T. AJNR Am J Neuroradiol. 2009;30:1898–906.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Citrin CM, Sherman JL, Gangarosa RE, Scanlon D. Physiology of the CSF flow-void sign: modification by cardiac gating. AJR Am J Roentgenol. 1987;148:205–8.

    Article  CAS  PubMed  Google Scholar 

  4. Del Bigio MR. Neuropathological changes caused by hydrocephalus. Acta Neuropathol. 1993;85:573–85.

    Article  PubMed  Google Scholar 

  5. Fletcher JM, McCauley SR, Brandt ME, Bohan TP, Kramer LA, Francis DJ, Thorstad K, Brookshire BL. Regional brain tissue composition in children with hydrocephalus. Relationships with cognitive development. Arch Neurol. 1996;53:549–57.

    Article  CAS  PubMed  Google Scholar 

  6. Doll A, Christmann D, Kehrli P, Abu Eid M, Gillis C, Bogorin A, Thiebaut A, Dietemann JL. Contribution of 3D CISS MRI for pre- and post-therapeutic monitoring of obstructive hydrocephalus. J Neuroradiol. 2000;27:218–25.

    CAS  PubMed  Google Scholar 

  7. Laitt RD, Mallucci CL, Jaspan T, McConachie NS, Vloeberghs M, Punt J. Constructive interference in steady-state 3D Fourier-transform MRI in the management of hydrocephalus and third ventriculostomy. Neuroradiology. 1999;41:117–23.

    Article  CAS  PubMed  Google Scholar 

  8. Dinçer A, Özek MM. Radiologic evaluation of pediatric hydrocephalus. Childs Nerv Syst. 2011;27:1543–62.

    Article  PubMed  Google Scholar 

  9. Christy A, Murchison C, Wilson JL. Quick brain magnetic resonance imaging with diffusion-weighted imaging as a first imaging modality in pediatric stroke. Pediatr Neurol. 2018;78:55–60.

    Article  PubMed  Google Scholar 

  10. Malviya S, Voepel-Lewis T, Eldevik OP, Rockwell DT, Wong JH, Tait AR. Sedation and general anaesthesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth. 2000;84:743–8.

    Article  CAS  PubMed  Google Scholar 

  11. DiMaggio C, Sun LS, Li G. Early childhood exposure to anesthesia and risk of developmental and behavioral disorders in a sibling birth cohort. Anesth Analg. 2011;113:1143–51.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Muccio CF, Caranci F, D’Arco F, Cerase A, De Lipsis L, Esposito G, Tedeschi E, Andreula C. Magnetic resonance features of pyogenic brain abscesses and differential diagnosis using morphological and functional imaging studies: a pictorial essay. J Neuroradiol. 2014;41:153–67.

    Article  PubMed  Google Scholar 

  13. Luo J, Luo Y, Zeng H, Reis C, Chen S. Research advances of germinal matrix hemorrhage: an update review. Cell Mol Neurobiol. 2019;39:1–10.

    Article  PubMed  Google Scholar 

  14. Wu T, Wang Y, Xiong T, Huang S, Tian T, Tang J, Mu D. Risk factors for the deterioration of periventricular–intraventricular hemorrhage in preterm infants. Sci Rep. 2020;10:1–8.

    Google Scholar 

  15. Payne AH, Hintz SR, Hibbs AM, Walsh MC, Vohr BR, Bann CM, Wilson-Costello DE, Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network. Neurodevelopmental outcomes of extremely low-gestational-age neonates with low-grade periventricular-intraventricular hemorrhage. JAMA Pediatr. 2013;167:451–9.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Parodi A, Morana G, Severino MS, Malova M, Natalizia AR, Sannia A, Rossi A, Ramenghi LA. Low-grade intraventricular hemorrhage: is ultrasound good enough? J Matern Fetal Neonatal Med. 2015;28(Suppl 1):2261–4.

    Article  PubMed  Google Scholar 

  17. Intrapiromkul J, Northington F, Huisman TAGM, Izbudak I, Meoded A, Tekes A. Accuracy of head ultrasound for the detection of intracranial hemorrhage in preterm neonates: comparison with brain MRI and susceptibility-weighted imaging. J Neuroradiol. 2013;40:81–8.

    Article  PubMed  Google Scholar 

  18. Parodi A, Govaert P, Horsch S, Bravo MC, Ramenghi LA, eurUS.brain group. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome. Pediatr Res. 2020;87:13–24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guillot M, Chau V, Lemyre B. Routine imaging of the preterm neonatal brain. Paediatr Child Health. 2020;25:249–62.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Leijser LM, de Vries LS. Preterm brain injury: germinal matrix-intraventricular hemorrhage and post-hemorrhagic ventricular dilatation. Handb Clin Neurol. 2019;162:173–99.

    Article  PubMed  Google Scholar 

  21. Plaisier A, Raets MMA, Ecury-Goossen GM, Govaert P, Feijen-Roon M, Reiss IKM, Smit LS, Lequin MH, Dudink J. Serial cranial ultrasonography or early MRI for detecting preterm brain injury? Arch Dis Child Fetal Neonatal Ed. 2015;100:F293–300.

    Article  PubMed  Google Scholar 

  22. Petropoulou C, Bouza H, Nikas I, Chrousos G, Anagnostakou M, Gouliamos A, Alexopoulou E. Magnetic resonance imaging versus ultrasound at early post-term age in brain imaging of preterm infants. J Neonatal Perinatal Med. 2012;5:363–71.

    Article  Google Scholar 

  23. Anderson PJ, Cheong JLY, Thompson DK. The predictive validity of neonatal MRI for neurodevelopmental outcome in very preterm children. Semin Perinatol. 2015;39:147–58.

    Article  PubMed  Google Scholar 

  24. Horsch S, Skiöld B, Hallberg B, Nordell B, Nordell A, Mosskin M, Lagercrantz H, Adén U, Blennow M. Cranial ultrasound and MRI at term age in extremely preterm infants. Arch Dis Child Fetal Neonatal Ed. 2010;95:F310–4.

    Article  CAS  PubMed  Google Scholar 

  25. Nongena P, Ederies A, Azzopardi DV, Edwards AD. Confidence in the prediction of neurodevelopmental outcome by cranial ultrasound and MRI in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2010;95:F388–90.

    Article  PubMed  Google Scholar 

  26. Ibrahim J, Mir I, Chalak L. Brain imaging in preterm infants <32 weeks gestation: a clinical review and algorithm for the use of cranial ultrasound and qualitative brain MRI. Pediatr Res. 2018;84:799–806.

    Article  CAS  PubMed  Google Scholar 

  27. McVige JW, Leonardo J. Imaging of Chiari type I malformation and syringohydromyelia. Neurol Clin. 2014;32:95–126.

    Article  PubMed  Google Scholar 

  28. Manara R, Concolino D, Rampazzo A, Zanetti A, Tomanin R, Faggin R, Scarpa M. Chiari 1 malformation and holocord syringomyelia in hunter syndrome. JIMD Rep. 2014;12:31–5.

    Article  PubMed  Google Scholar 

  29. Chirossel JP, Passagia JG, Gay E, Palombi O. Management of craniocervical junction dislocation. Childs Nerv Syst. 2000;16:697–701.

    Article  CAS  PubMed  Google Scholar 

  30. Massimi L, Novegno F, di Rocco C. Chiari type I malformation in children. Adv Tech Stand Neurosurg. 2011;37:143–211.

    Article  Google Scholar 

  31. Hukki A, Koljonen V, Karppinen A, Valanne L, Leikola J. Brain anomalies in 121 children with non-syndromic single suture craniosynostosis by MR imaging. Eur J Paediatr Neurol. 2012;16:671–5.

    Article  CAS  PubMed  Google Scholar 

  32. D’Arco F, Ganau M. Which neuroimaging techniques are really needed in Chiari I? A short guide for radiologists and clinicians. Childs Nerv Syst. 2019;35:1801–8.

    Article  PubMed  Google Scholar 

  33. Battal B, Kocaoglu M, Bulakbasi N, Husmen G, Tuba Sanal H, Tayfun C. Cerebrospinal fluid flow imaging by using phase-contrast MR technique. Br J Radiol. 2011;84:758–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamada S, Tsuchiya K, Bradley WG, Law M, Winkler ML, Borzage MT, Miyazaki M, Kelly EJ, McComb JG. Current and emerging MR imaging techniques for the diagnosis and management of CSF flow disorders: a review of phase-contrast and time-spatial labeling inversion pulse. AJNR Am J Neuroradiol. 2015;36:623–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mohammad SA, Osman NM, Khalil RM. Phase-contrast and three-dimensional driven equilibrium (3D-DRIVE) sequences in the assessment of paediatric obstructive hydrocephalus. Childs Nerv Syst. 2018;34:2223–31.

    Article  PubMed  Google Scholar 

  36. Shah S, Haughton V, del Río AM. CSF Flow through the Upper Cervical Spinal Canal in Chiari I Malformation. AJNR Am J Neuroradiol. 2011;32:1149–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ramaiah R, Bhananker S. Pediatric procedural sedation and analgesia outside the operating room: anticipating, avoiding and managing complications. Expert Rev Neurother. 2011;11:755–63.

    Article  PubMed  Google Scholar 

  38. Patel DM, Tubbs RS, Pate G, Johnston JM Jr, Blount JP. Fast-sequence MRI studies for surveillance imaging in pediatric hydrocephalus. J Neurosurg Pediatr. 2014;13:440–7.

    Article  PubMed  Google Scholar 

  39. Benson ML, Oliverio PJ, Yue NC, Zinreich SJ. Primary craniosynostosis: imaging features. AJR Am J Roentgenol. 1996;166:697–703.

    Article  CAS  PubMed  Google Scholar 

  40. Kotrikova B, Krempien R, Freier K, Mühling J. Diagnostic imaging in the management of craniosynostoses. Eur Radiol. 2007;17:1968–78.

    Article  PubMed  Google Scholar 

  41. Kirmi O, Lo SJ, Johnson D, Anslow P. Craniosynostosis: a radiological and surgical perspective. Semin Ultrasound CT MR. 2009;30:492–512.

    Article  PubMed  Google Scholar 

  42. Khanna PC, Thapa MM, Iyer RS, Prasad SS. Pictorial essay: the many faces of craniosynostosis. Indian J Radiol Imaging. 2011;21:49–56.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Regelsberger J, Delling G, Tsokos M, Helmke K, Kammler G, Kränzlein H, Westphal M. High-frequency ultrasound confirmation of positional plagiocephaly. J Neurosurg. 2006;105:413–7.

    PubMed  Google Scholar 

  44. Soboleski D, Mussari B, McCloskey D, Sauerbrei E, Espinosa F, Fletcher A. High-resolution sonography of the abnormal cranial suture. Pediatr Radiol. 1998;28:79–82.

    Article  CAS  PubMed  Google Scholar 

  45. Soboleski D, McCloskey D, Mussari B, Sauerbrei E, Clarke M, Fletcher A. Sonography of normal cranial sutures. AJR Am J Roentgenol. 1997;168:819–21.

    Article  CAS  PubMed  Google Scholar 

  46. Medina LS, Richardson RR, Crone K. Children with suspected craniosynostosis: a cost-effectiveness analysis of diagnostic strategies. AJR Am J Roentgenol. 2002;179:215–21.

    Article  PubMed  Google Scholar 

  47. Vannier MW, Hildebolt CF, Marsh JL, Pilgram TK, McAlister WH, Shackelford GD, Offutt CJ, Knapp RH. Craniosynostosis: diagnostic value of three-dimensional CT reconstruction. Radiology. 1989;173:669–73.

    Article  CAS  PubMed  Google Scholar 

  48. Blaser SI. Abnormal skull shape. Pediatr Radiol. 2008;38(Suppl 3):S488–96.

    Article  PubMed  Google Scholar 

  49. Rollins N, Booth T, Shapiro K. MR venography in children with complex craniosynostosis. Pediatr Neurosurg. 2000;32:308–15.

    Article  CAS  PubMed  Google Scholar 

  50. Cinalli G, Sainte-Rose C, Kollar EM, Zerah M, Brunelle F, Chumas P, Arnaud E, Marchac D, Pierre-Kahn A, Renier D. Hydrocephalus and craniosynostosis. J Neurosurg. 1998;88:209–14.

    Article  CAS  PubMed  Google Scholar 

  51. Collmann H, Sörensen N, Krauss J. Hydrocephalus in craniosynostosis: a review. Childs Nerv Syst. 2005;21:902–12.

    Article  CAS  PubMed  Google Scholar 

  52. Medina LS. Three-dimensional CT maximum intensity projections of the calvaria: a new approach for diagnosis of craniosynostosis and fractures. AJNR Am J Neuroradiol. 2000;21:1951–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Choudhary AK, Servaes S, Slovis TL, et al. Consensus statement on abusive head trauma in infants and young children. Pediatr Radiol. 2018;48:1048–65.

    Article  PubMed  Google Scholar 

  54. Servaes S, Brown SD, Choudhary AK, et al. The etiology and significance of fractures in infants and young children: a critical multidisciplinary review. Pediatr Radiol. 2016;46:591–600.

    Article  PubMed  Google Scholar 

  55. Anderst JD, Carpenter SL, Abshire TC, Section on Hematology/Oncology and Committee on Child Abuse and Neglect of the American Academy of Pediatrics. Evaluation for bleeding disorders in suspected child abuse. Pediatrics. 2013;131:e1314–22.

    Article  PubMed  Google Scholar 

  56. Meyer JS, Gunderman R, Coley BD, et al. ACR Appropriateness Criteria(®) on suspected physical abuse-child. J Am Coll Radiol. 2011;8:87–94.

    Article  PubMed  Google Scholar 

  57. Choudhary AK, Jha B, Boal DK, Dias M. Occipital sutures and its variations: the value of 3D-CT and how to differentiate it from fractures using 3D-CT? Surg Radiol Anat. 2010;32:807–16.

    Article  PubMed  Google Scholar 

  58. Vezina G. Assessment of the nature and age of subdural collections in nonaccidental head injury with CT and MRI. Pediatr Radiol. 2009;39:586–90.

    Article  PubMed  Google Scholar 

  59. Bradford R, Choudhary AK, Dias MS. Serial neuroimaging in infants with abusive head trauma: timing abusive injuries. J Neurosurg Pediatr. 2013;12:110–9.

    Article  PubMed  Google Scholar 

  60. Vinchon M, Noulé N, Tchofo PJ, Soto-Ares G, Fourier C, Dhellemmes P. Imaging of head injuries in infants: temporal correlates and forensic implications for the diagnosis of child abuse. J Neurosurg. 2004;101:44–52.

    PubMed  Google Scholar 

  61. Adamsbaum C, Morel B, Ducot B, Antoni G, Rey-Salmon C. Dating the abusive head trauma episode and perpetrator statements: key points for imaging. Pediatr Radiol. 2014;44(Suppl 4):S578–88.

    Article  PubMed  Google Scholar 

  62. Sieswerda-Hoogendoorn T, Postema FAM, Verbaan D, Majoie CB, van Rijn RR. Age determination of subdural hematomas with CT and MRI: a systematic review. Eur J Radiol. 2014;83:1257–68.

    Article  PubMed  Google Scholar 

  63. Haq I, Jayappa S, Desai SK, Ramakrishnaiah R, Choudhary AK. Spinal ligamentous injury in abusive head trauma: a pictorial review. Pediatr Radiol. 2021;51:971–9.

    Article  PubMed  Google Scholar 

  64. Choudhary AK, Ishak R, Zacharia TT, Dias MS. Imaging of spinal injury in abusive head trauma: a retrospective study. Pediatr Radiol. 2014;44:1130–40.

    Article  PubMed  Google Scholar 

  65. Kadom N, Khademian Z, Vezina G, Shalaby-Rana E, Rice A, Hinds T. Usefulness of MRI detection of cervical spine and brain injuries in the evaluation of abusive head trauma. Pediatr Radiol. 2014;44:839–48.

    Article  PubMed  Google Scholar 

  66. Vinchon M, de Foort-Dhellemmes S, Desurmont M, Delestret I. Confessed abuse versus witnessed accidents in infants: comparison of clinical, radiological, and ophthalmological data in corroborated cases. Childs Nerv Syst. 2010;26:637–45.

    Article  PubMed  Google Scholar 

  67. Bhardwaj G, Chowdhury V, Jacobs MB, Moran KT, Martin FJ, Coroneo MT. A systematic review of the diagnostic accuracy of ocular signs in pediatric abusive head trauma. Ophthalmology. 2010;117:983–992.e17.

    Article  PubMed  Google Scholar 

  68. Levin AV. Retinal hemorrhage in abusive head trauma. Pediatrics. 2010;126:961–70.

    Article  PubMed  Google Scholar 

  69. Binenbaum G, Forbes BJ. The eye in child abuse: key points on retinal hemorrhages and abusive head trauma. Pediatr Radiol. 2014;44(Suppl 4):S571–7.

    Article  PubMed  Google Scholar 

  70. Bhatia A, Mirsky DM, Mankad K, Zuccoli G, Panigrahy A, Nischal KK. Neuroimaging of retinal hemorrhage utilizing adjunct orbital susceptibility-weighted imaging. Pediatr Radiol. 2021;51:991–6.

    Article  PubMed  Google Scholar 

  71. Aoulad Fares D, Schalekamp-Timmermans S, Nawrot TS, Steegers-Theunissen RPM. Preconception telomere length as a novel maternal biomarker to assess the risk of spina bifida in the offspring. Birth Defects Res. 2020;112:645–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lei Y-P, Zhang T, Li H, Wu B-L, Jin L, Wang H-Y. VANGL2 mutations in human cranial neural-tube defects. N Engl J Med. 2010;362:2232–5.

    Article  CAS  PubMed  Google Scholar 

  73. Dhingani DD, Boruah DK, Dutta HK, Gogoi RK. Ultrasonography and magnetic resonance imaging evaluation of pediatric spinal anomalies. J Pediatr Neurosci. 2016;11:206–12.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mehta DV. Magnetic resonance imaging in paediatric spinal dysraphism with comparative usefulness of various magnetic resonance sequences. J Clin Diagn Res. 2017;11:TC17–22.

    PubMed  PubMed Central  Google Scholar 

  75. Altman NR, Altman DH. MR imaging of spinal dysraphism. AJNR Am J Neuroradiol. 1987;8:533–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea De Vito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Vito, A., Ben Zvi, I., D’Arco, F. (2023). MR Protocols for Paediatric Neurosurgical Common Conditions: An Update Guide for Neurosurgeons. In: Di Rocco, C. (eds) Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 48. Springer, Cham. https://doi.org/10.1007/978-3-031-36785-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-36785-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-36784-7

  • Online ISBN: 978-3-031-36785-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics